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Abstract
Neural networks have seen increasing use
in various robotic tasks such as locomo-
tion largely due to advanced in Deep
Learning techniques and Reinforcement
Learning algorithms. We examine sev-
eral Deep Learning approaches to learn-
ing a semi-autonomous locomotion pol-
icy for a ground based search and rescue
robot using only front facing RGBD cam-
era and proprioceptive data. A super-
vised learning approach is suggested and
implemented for the case where we only
have a real robot and no simulated envi-
ronment. We also suggest a method to
deal with potential issues of multimodal
action distributions using an alternative
loss proxy based on Generative Adver-
sarial Networks. Reactive as well as re-
current policies implemented using RNNs
are compared. A simulator is used to
train policies for the robot using Deep
Reinforcement Learning. All policies are
trained end-to-end, using convolutional
neural networks for high dimensional im-
age inputs. We examine the performance
of policies trained with variously shaped
rewards such as low control effort and
smooth locomotion. Experiments are per-
formed on the real robot using a learned
RNN policy in the simulator and observe
that the policy is transferable with no
finetuning to the real environment, albeit,
with some performance degradation. We
also suggest two potential methods of do-
main transfer based on image modification
using Gram matrix matching and Gener-
ative Adversarial Networks.

Keywords: Deep learning, imitation,
reinforcement learning, neural networks

Supervisor: doc. Ing. Karel
Zimmermann, Ph.D

Abstrakt
Diky současnému pokroku v algoritmech
hlubokého a posilovaného učení, jsou neu-
ronové sítě stále častejí použivane v růz-
ných robotických ůlohách jako je na-
priklad rizeni robotu pri prejizdeni nerov-
neho terenu. Zkoumáme různe přístupy
hlubokého učeni semi-autonomního algo-
ritmu pohybu pro terénniho robota ur-
čeneho pro učely ’Search&Rescue’ misí s
použití jenom čelní kamery a interocep-
tivnich dat. Navrhujeme nový algoritmus
učení s učitelem a implementujeme ho pro
připad kde máme pouze reálného robota
bez simulovaného prostředí. Dále navrhu-
jeme metodu řešící problém multimoda-
lity akcí pomocí Generative Adversarial
Networks (GAN). Porovnávame reaktivní
a rekurentní chováni implementované po-
mocí RNN sítí. Simulátor je použit pro
trenování pohybu robotu pomocí hlubo-
kého posilovaného učení. Všechny algo-
ritmy chováni jsou trenované jako celek,
s použitím konvolučních neuronových sítí
pro vysokodimenzionální vstupy. Zkou-
máme a experimentálně vyhodnocujeme
různé metody pro reward shaping jako
je napřiklad low control effort a smooth
locomotion. Experimenty na realném ro-
botu s použitím naučené rekurentní sítě ze
simulátoru ukazují, že algoritmus je pou-
žitelný i bez nutnosti přeučení na reálném
systému. Také navrhujeme dva algoritmy
pro domain transfer založene na modifi-
kací obrázku s použitím shody s Gram
maticí a GAN sítí.

Klíčová slova:

Překlad názvu: Hluboké učení pro
autonomní řízení fliperů robotu v
simulaci
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Chapter 1

1.1 Motivation

Mobile robotics is a multidisciplinary field that is primarily concerned with
robots that are able to move and navigate in a certain environment to perform
one or more tasks. These robots are usually called agents and are either
completely controlled by a user or have a certain degree of autonomy to
them. Such robots have been finding use in various fields such as industry,
astronomy and transportation. Mobile robots are capable of performing tasks
that are monotonous, expensive, dangerous or outright impossible to do by
humans. Some examples of these include cave or ocean exploration, search
and rescue missions and small or large scale geographical data collection,
etc. There are arguably two main challenges to building a mobile robotic
system consisting of one or more agents. One of them is the design and
implementation of the actual physical robot itself, called the embodiment.
The second, is the control, or decision mechanism of the robot which enables
the robot to perform its task in a specific environment. This behavioral part
is usually referred to as the ’Intelligence’ of the robot and has been actively
research by the Artificial Intelligence (AI) community for decades. Designing
more effective semi or fully autonomous robots can vastly benefit humanity
in various aspects both in the present day with problems such as search and
rescue or in the future in tasks such as space exploration.

1.2 Aims

We attempt to provide a Deep Learning [23] approach for learning a semi-
autonomous locomotion policy for a mobile robot whose task it is to configure
itself in such a way so that it is able to traverse a set of ground obstacles such
as construction debris. By policy we mean a function which tells the agent
what action to perform at each state. This policy is intended to decrease the
cognitive load on a human operating the robot allowing them to concentrate
on other mission tasks. The operator provides simple commands to the robot,
such as steering and velocity, and the robot must autonomously control its
configuration to achieve the desired locomotion. The contribution of this
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1. ..........................................
thesis is an approach using Deep Learning to attempt to solve the above task
on a robot using only a minimal amount of sensory input, namely a front
facing RGB or RGBD camera such as the Realsense R200 [33]. Instead of
using classical methods such as planning in a map obtained with SLAM [8],
we turn to using Deep Learning with neural networks to obtain a reactive
and recurrent policy in a simulator and attempt to transfer it to the real
world. Successfully learning a neural network policy from a high dimensional
visual input means that it can work in real time on very simple embedded
hardware and with cheap sensors, reducing development costs and potentially
further spreading the use of mobile robots.

1.3 Thesis structure

The next chapter gives a brief overview of the field of mobile robotics and
related work. We take a look at the recent innovations in neural networks and
deep learning and how the community has been approaching the problem and
where it stands amongst classical methods. This is followed by a description
of the NIFTi project, which encompasses the main robot that we will be
demonstrating our algorithms on. Part I is concluded with an overview of
Tensorflow [5] and why the concept of computational graphs is crucial in deep
learning research.

In part II we explore how human input can be used to learn a locomotion
policy in a simulator or on the real robot using a limited amount of demon-
strations. We also discuss and attempt to overcome the partial observability
problem when navigating from a single front facing camera using recurrent
neural networks.

Part III focuses on self-supervised learning, namely Reinforcement learning
[58]. Here the problem is tackled by providing the agent with a simulated
environment and learning a policy essentially by trial and error. We take a
look at state of the art algorithms that have been developed in the past few
years that can handle high dimensional state-spaces and action spaces.

In Part IV we attempt to transfer the learned policy from the simulated
environment to the real robot. We discuss the physics and input data
distribution mismatches and proposed methods how to deal with them. It is
then followed by a description of the experiments on the real robot as well as
results.

In Part V we analyze the overall results and discuss the applicability of the
proposed methods in this thesis, followed by a future work and conclusion.
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Chapter 2
Related work

Robot control in mobile systems can usually be divided into a few different
paradigms, namely reactive, hierarchical and hybrid. Reactive systems are
typically very simple and consist of a function called a ’policy’ which maps
current sensory inputs to a given action. Their disadvantage is the inability
to solve complex tasks which require long-term planning. Some examples
of reactive methods in robots include bug algorithms and swarm behavior.
Hierarchical systems consist of multiple modules which work asynchronously
at different time scales. It may consist for example of a sensing system which
usually builds a map representation of the environment, a planning module
which communicates with the sensing module and decides what to do next,
and a low-level controller which takes inputs from the planner and sends
them to typically fast-paced hardware controllers. State of the art locomotion
tasks usually use SLAM-based [8] map synthesis to localize the robot and
continuous-space planning techniques such as RRT* [40] to plan a trajectory
in configuration space for the robot from a start point to a goal point. It
is to be noted that such planning techniques suffer from the typical curse
of dimensionality and are slow or completely unusable for high-dimensional
configuration spaces. SLAM-based techniques are error prone, especially
in outdoor environments and are computationally expensive, especially in
the case of Visual SLAM (vSLAM) [59]. Another disadvantage of the above
methods is that they usually require data fusion from multiple sensors, some of
which are bulky, expensive and error prone. An implementation/deployment
of such a system consists of multiple software modules, and usually the
requirement of an x86 hardware based system, which can be difficult or even
infeasible to use on certain platforms due to size, power or price constraints.

Lately we have seen the emergence of reinforcement learning being applied
to all sorts of robotic tasks ranging from simple gait learning to complex
robotic manipulation. A typical problem of Reinforcement learning methods
is the high sample complexity requirement which translates to long training
times. Using deep neural networks as policy functions it has been shown that
it is possible to learn tasks that have high dimensional action spaces (> 30)
and very high dimensional input spaces (control from pixels). In most of
these examples the policy that is learned is reactive, which is at first glance
a severe limitation, but it has been shown that even reactive policies can

5



2. Related work.....................................
exhibit persistent complex behaviors [27] in dynamic and adversarial [10]
environments. A reactive policy is an issue when the environment is partially
observable, which is often the case in robotic locomotion. By the notion of
partial observability we mean that we do not have enough information to make
an optimal decision. In the case of locomotion usually the partial observable
factor is the environment. This issue is mitigated by using some sort of state
representation which includes a portion of the history. Another way of solving
this issue is to use recurrent neural networks (RNN) which can remember the
relevant state information from the history and enable the use of a reactive
policy on that state representation. This will be discussed in detail in part
II. Advances in neural network architectures enable complex designs such as
Neural Turing Machines [25] and memory networks [66] which keep explicit
memory storages and access them in a differentiable manner which allows
the application of many standard neural network training techniques. This
has even been extended to techniques such as Neural-SLAM [68].

Learning a policy from visual inputs in a simulator is usually an issue as
the learned policy does not directly transfer to real life due to the dynamics
of the real world differing from the simulation and distribution mismatch
of the simulation render and the real-world camera image. This issue is an
active area of research in the deep learning community. Various approaches
exist including fine-tuning (partially retraining) the policy on the real world,
learning robust transferable visual features, or modifying the input image of
the simulator to look as the real image or the other way around. These will
be discussed in detail in part V.
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Chapter 3
NIFTi project

The main robot that we will be testing our methods on is an unmanned ground
based vehicle (UGV) designed to navigate complex terrain cluttered with
obstacles, such as construction sites, primarily for purposes of Urban search
and rescue (USAR). It is part of a larger project named NIFTi [1], which
is a human-robot collaboration that aims to assist in emergency and USAR
situations. The NIFTi project was discontinued in 2013 and subsequently
replaced with the TRADR project [4]. Figure 3.1 shows the UGV. To avoid
confusion, we will refer to this robot as the NIFTi robot, UGV or simply
’robot’ interchangeably from now on.

Figure 3.1: NIFTi UGV robot

Mechanical description. The UGV itself consists of two main tracks, called
bogies, each of which has two independently controllable flippers attached. The
track velocity of each bogie and the attached flippers is controlled by a single
motor. The bogies are attached to the body via a revolving joint, although we
use the inbuilt locking mechanism to disallow rotation, making the attachment
fixed. The main body of the robot houses the battery and all the electronics.
The motors for both the tracks and flippers are embedded inside the bogies
themselves. The robot has a total height of about 41cm, width of 60cm and
total length of about 115cm with the flippers extended. The platform weighs
roughly 25kg fully loaded. The robot has an approximate maximum linear
track velocity of 0.3ms−1 and maximum angular flipper velocity of π4 rads

−1.

7



3. NIFTi project.....................................
The flipper torque is relatively low and the robot cannot lift itself up using
the flippers.

Electronics. The electronics consist of an embedded x86 platform PC with
a quad core processor, power distribution board for the whole platform and
a sensor board. The communication between sensors and motors is done
through a standard CAN bus.

Sensors. The sensors consist of a rotating laser scanner, omnicam, and IMU
& GPS sensors. A Realsense R200 RGBD camera is connected to the main
body using a 3-D printed mount, as shown in figure 3.2.

Figure 3.2: An illustration to show the front facing camera position on the
robot. FOV is not to scale.

Software platform. The on-board embedded PC runs an Ubuntu Linux
distribution with the Robotics Operating System (ROS) [48] serving as the
middleware between the sensors, motors and processing unit. Robot control
and sensor readings are done by reading or publishing from the appropriate
ROS topics. This makes it easy to transition from a simulation to the real
robot without much change in code. Along with the physical platform, a
simulation model is provided for the Gazebo platform [36] for the UGV which
we use in most of our experiments. In the simulation we set a simulation
step value of 200ms. This means that after publishing the actions we run the
simulator for 200ms before taking the next sensor readings and republishing
the next actions. This rather large value is fine in our case where the robot
is slow and dynamics don’t play a significant role in locomotion, allowing for
slower update rates.

Robot control. The robot control consists of the following main input
signals: Two inputs for the track velocities of the left and right bogies, four
inputs for the angle control of the flippers. The flippers are controlled by
providing an angle reference, which is then realised using a built-in PID
controller.

The locomotion task for this robot consists of having correct flipper angle
configurations when trying to move through terrain or overcome an obstacle.
This is manually controlled by the operator which is difficult and slow given
the multiple degrees of freedom that the robot presents. In this thesis we
essentially attempt to lessen the burden of controlling flipper position from
the operator by delegating the flipper task to the robot.

8



Chapter 4
Tensorflow

One of the contributing factors to advancing neural network research is
the ability to quickly and efficiently prototype and train neural network
architectures. Tensorflow [5] is a framework, developed by a Google team
which allows just that. It is based on a declarative programming style
where the user defines a computational graph and then queries the graph for
specific outputs given certain inputs. Every complex operation in the graph
is decomposed into basic addition and multiplication operations. One of the
advantages of this approach is that we can request gradients of any node with
respect to any other node in the graph and get the gradients essentially "for
free". Due to this feature, Tensorflow is sometimes called an autodiff software
package, along with similar frameworks such as Theano [11] and Torch [17].

Figure 4.1: Simple code example in TensorFlow showing a computation of
y = ax2 + bx+ c along with the generated computational graph. Code example
taken from [3]

Tensorflow also comes with multiple ready modules for neural networks,
called layers which can be easily wired together and attached to an optimizer
object. This leads to faster and less bug-prone prototyping. Tensorflow
also comes with a sophisticated visualization tool called Tensorboard [2]
which allows real-time monitoring and logging of almost all features inside the
computation graph, such as neuron activation histograms, weight distributions,
gradient magnitudes, network outputs, etc. This allows the user to tune

9



4. Tensorflow......................................
network parameters for more efficient operation or to debug a neural network
architecture which is not performing as expected.

Figure 4.2: Tensorboard visualization example. Image taken from Edward:
http://edwardlib.org/tutorials/tensorboard
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Chapter 5
Definition of the task

What we are essentially trying to solve here is autonomous or rather semi-
autonomous robot locomotion for the NIFTi robot. We define the task as
follows: The robot is placed at position p1 in the simulator and the task is to
successfully navigate to p2 through the placed obstacles towards the side of
the goal. The exact y position of the goal is not important, rather, we only
consider the x position and consider the task successfully solved when the
robot passes the green finish line. Figure 5.1 shows a top-down 2 dimensional
illustration of this setup, which we will refer to as the scene.

Figure 5.1: Task specification. The NIFTi robot starts on the left side and has
to navigate to the right side through the red part with navigable obstacles past
the green finish line.

For our task, we will use a subset of the NIFTi robots action space.
Specifically, we will be controlling the continuous position of each of the 4
flippers in the range [−π, π]. The track velocities are controlled continuously
by a human operator in the range [−1, 1] where the boundaries of the interval
denote the maximum track velocity. This makes the action space in total
of 6 continuous actions. Concerning the inputs we have at our disposition
the following sensor measurements: 6-DOF IMU, flipper angle measurements,
and exteroceptive measurements including a front facing camera attached to
robot and observer camera looking at the whole scene. We will be considering
subsets of the action and input spaces for most of our tasks; e.g. The robot
will be controlling the flipper angles only and the inputs can be either a single
depth image or in combination with other proprioceptive data.

13



5. Definition of the task .................................
Policy expectation. For the robot to successfully navigate the obstacles to
get to the other side it has to appropriately configure the 4 flippers at every
step. If a certain flipper is too low it might get stuck under an obstacle. If it’s
too high, the angle of attack might be too high which will pose difficulty to the
robot in ascending an obstacle. The robot has to support itself appropriately
at every point, ideally keeping as much flipper contact as possible to maximize
traction and to ascend/descend obstacles smoothly to avoid unstable positions
where the robot can suddenly tilt and land hard on its flippers, potentially
damaging the mechanism. These criteria are explained in more detail and
with illustrations in part IV.

Obstacle generation. To train various policies throughout the thesis we use
randomly generated obstacles at every episode. We use Palette models in
Gazebo as our main obstacle objects which are of size 1.2m× 1.2m× 1.2m.
The palette is a good obstacle model because it features edges as flat top
surfaces, holes in the side and other features which can make navigation
over them tricky due to flippers getting stuck etc. We use 3 palettes which
are generated randomly with x values varying across 1.5 meters, y values
varying across 0.8 and z values varying across the range of the height of
2 palettes stacked on top of each other. Environments generated this way
test the maximum physical limits of the robot. To evaluate various policies
we define a dataset D25 which consists of 25 environments generated in the
above fashion using a static seed. Environments also define a progress counter
which measure the amount of x distance travelled by the robot in a single
simulation step. If the robot takes to long or gets stuck, the episode counts
as a fail.
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Chapter 6
Learning from expert inputs

In this chapter we attempt to learn a locomotion policy from human expert
demonstrations. This is commonly referred to as learning from demonstrations.
In this case, the term expert is only used formally and refers to any human
demonstrator who can perform the task to some extent. Learning from
demonstrations is a useful approach in a scenario where we only have the real
physical robot in the environment that we expect to deploy in, without any
access to the robot or environment dynamics and no access to a simulator.
Despite that, we do make use of the available simulator to test and verify the
learning algorithms. In our setting, the robot is fully controllable by a human
operator, meaning that it is not unreasonable to manually obtain a training
set which can be used to train a locomotion policy. The many degrees of
freedom make it difficult for an operator to perform the task at all, let alone
in real time. A policy that successfully imitates some portion of the task
alleviates the operator of some of the cognitive load required for it, freeing
him/her up to perform other tasks that are vital to the mission.

6.1 Imitation as a supervised learning problem

We first consider the simplest form of learning from demonstrations, which is
behavioral cloning [42]. This means that we simple want to imitate, or "ape"
the demonstrations. To avoid the issue of partial observability we initially
attempt to learn a policy from a representation which makes the task mostly
fully observable. One simple way is to use a digital height map (DEM) to
represent the obstacles around the robot and to provide localization and
configuration information to the robot so that it knows where it is relative to
the DEM. Another simpler example is to use pixel inputs of a camera looking
at the whole scene, which we call the observer image. This arguably makes
the task fully observable as we can see the location and configuration of the
robot as well as all of the obstacles, albeit at an angle, meaning that the
necessary 3D geometry has to be inferred by the policy. Due to the kinematic
nature of our robot we can assume that a static image is all that is required
for us to predict a correct action. Of course we cannot infer velocities from a
single image which could lead to performance degradation but in our case
this simplification suffices for some basic experiments. A simple solution to

15



6. Learning from expert inputs ..............................
this problem would be to provide the last 3 images as the state which is a
commonly used technique in the atari game simulators. Figure 6.1 shows a
montage view of the task from the observer image.

Figure 6.1: A sequence of observer images in the Gazebo Simulator

Markov Decision Process. Before formalizing the imitation learning problem
we will first define the Markov decision process. We consider a setup where
the agent interacts with environment E in discrete time steps t by performing
actions. At each timestep the agent is in a state st and can transition to
a state st+1 by performing action at. The agent receives a scalar reward
rt(st, at) from the environment which can be interpreted as a reward for taking
action at at state st. It can also be interpreted as the reward rt(st, st+1)
of transitioning from state st to st+1 due to have taken action at. Actions
are taken according to a function π : s → a, which we call the policy
of the agent. The policy is non-deterministic in the general case and is
denoted by π(a|s) which is a distribution over actions given a state. The
environment transitions from state st to st+1 by probabilistic transition
dynamics p(st+1|st, at). A decision process is called Markov if it has the
property where p(st+1|st, at, st−1, at−1, ..., s1, a1) = p(st+1|st, at) for all t. The
Markov Decision Process can be described by the following 5-tuple:

M = (S,A, P,R, γ) (6.1)

Where S is a set of states of the environment, A are the actions of the
agent, P is the state transition probability function, R is the reward function,
and γ ∈ [0, 1] is the discount factor which signifies the importance of later
rewards as opposed to immediate ones. A gamma of γ = 1 means that we
care about all rewards equally whereas a γ = 0 means that we only care for
the immediate reward. For the imitation learning problem we will initially
consider an MDP without rewards: MDP\R

Ms = (S,A, P, γ) (6.2)

We can then formalize the imitation learning as a supervised learning
problem where for each state si the policy predicts an action ai which is then
compared to the expert action ei for that state. This is a standard regression
problem for which we will use the mean square error (MSE) loss as the
optimization criterion. The MSE in this case is simply an easily manageable
proxy for the optimal loss function which evaluates the action with respect
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........................ 6.1. Imitation as a supervised learning problem

to the expert action, without taking into account their true distributions.
Since this is inherently a sequential task where the state distribution depends
on the policy, we have to take into account and take expectations over the
distribution ξ(τ ; θ) of state trajectories τ which is induced by πθ(s). The
optimization problem can then be written out as shown in equation 6.4 where
the policy πθ(s) is parametrized by a parameter vector θ which can refer to
the weights of a linear function for example.

θ∗ = argmin
θ

Eξ(τ ;θ)
∑
t∈τ
‖πθ(st)− e(st)‖2 (6.3)

Since the distribution of the robot policy is unknown before the actual
optimization, we have insufficient information to solve the above objective
directly. We can first relax the problem by ignoring the sequential nature
of the state distribution and treat it on a per-example basis, making it into
the following optimization problem which can be easily solved. The possible
negative consequences of this relaxation are addressed later on in the chapter.

θ∗ = argmin
θ

∑
τ∈T

∑
t∈τ
‖πθ(st)− e(st)‖2 (6.4)

Here we denote T = τ1, ...τn to be the set of n available demonstration
trajectories. In this experiment the track velocities are controlled by the
user, leaving the policy to control only the flipper configurations. As the
policy function πθ(s) we use a convolutional neural network [21],[41](CNN)
which takes which maps grayscale input images si ∈ Rd×d straight to actions
ai ∈ R4, where the actions are the individual flipper positions of the robot.
The structure of such a CNN policy is shown in fig 6.2. It is a fairly standard
architecture with several alternating convolutional/pooling layers, followed
by several fully connected layers. The convolutional layers extract lower
dimensional features from high dimensional image inputs which are then fed
into a fully connected multilayer perceptron. For this simple experiment
and several following it we stick with standard CNN architectures and do
not focus on state of the art techniques which offer improvements in sample
efficiency and training stability as this is not the point of the experiment.

Training. The CNN is optimised with stochastic gradient descent, using
minibatches of size 32 - 64. Minibatches improve training stability in deep
neural networks by averaging noisy gradients and therefore preventing the
parameters being knocked off too far from the solution manifold during
updates. Algorithm 1 demonstrates this simple training procedure. We also
add training from grayscale and depth images from the front facing camera
attached to the robot for comparison. In this case, however, the robot also
receives current flipper angle and IMU data which is integrated into the CNN
at the first fully connected layer.

The trajectories are gathered in the following way: The user is given
the same input observer image as the policy itself and controls the NIFTi
robot using a plain game pad. The user uses the game pad joysticks to
control both track velocities jointly (meaning the robot can’t turn) and the 4
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6. Learning from expert inputs ..............................
Algorithm 1 MSE behavioral cloning optimization

1: Require: Learning rate α, amount of iterations N
2: Initialize random parameter vector θ, expert trajectories T = {τ0, ...τn}
3: for N iterations do
4: Select random minibatch B of {si, ai}m ∈ T
5: θ = θ − α · ∇θ

∑m
i=1 (πθ(si)− ai)2

6: end for

flipper positions by varying the x and y positions of both joysticks, giving 4
continuous degrees of freedom, one for each flipper. Controlling four degrees
of freedom this way results in quite noisy trajectories. During each episode
all sensory and visual data is logged, along with the user actions. After each
episode, the obstacles are repositioned randomly to prevent overfitting and
to generate a more robust policy. We use the palette model obstacles as
mentioned earlier. The objects are positioned at varying x, y and z coordinates
and are made to be static in the simulator, meaning that they do not move.
This is done primarily due to two important reasons. The first is that having
many dynamic obstacles in the scene has a severe impact on performance
due to the extra collision checking that the simulator has to perform. The
second reason is that it would be more difficult to programmatically randomly
reposition objects because static objects aren’t checked for collisions between
themselves so it is not a problem if their volumes overlap in the 3D space.

Evaluation. This simple approach gets decent results, even on relatively
noisy and inaccurate user trajectories. The policy was trained on about 50
training trajectories with up to 100 time-steps each and fits them with no issue.
We can also compare the test accuracy on 10 withheld trajectories. Typically
in a given state the user will have performed various different actions. A
visual inspection shows that the policy learns an "average" behavior over the
noisy user trajectories which is to be expected given the MSE that we use to
train it. Figure 6.3 shows the MSE training curve and results of supervised
learning from the observer image and grayscale and depth images from the
front facing camera attached to the robot. We can see that on the observer
inputs the training error decreases rapidly and after about 500 iterations it
starts to overfit because the test error starts rising slightly. Although the
MSE gives an initial indicator of how well the policy fits the actions, it is
not a good indicator of performance due to the sequential nature of the task.
More detailed evaluation is discussed in the next section.

Discussion. We can see that using the observer image leads to overfitting
with our small demonstration set and a relatively large test error. The front-
facing grayscale image performs better than the observer image but both
are outperformed by the depth image. It is, however, necessary to realise
that we can easily constrain a regularize the network so that it does not
overfit. This can simply be done by early stopping. If we stop training at
1000 iterations for the observer image we can see that the minimum test error
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........................ 6.1. Imitation as a supervised learning problem

Figure 6.2: The architecture of the convolutional neural network policy. Con-
volutional layers are composed of a stack of 3x3 learnable filters, ReLU [46]
activations, and dropout layers which set random neurons in a given featuremap
to zero with a given probability. Maxpool layers are downsampling operations
with a 2x2 window size and stride 2. The sized of the feature maps in the figure
are approximate and might vary slightly depending on convolution filter sizes.
The network has 8 convolutional filters per layer.

of 0.15 attained is similar to that of the rest of the runs, which means that
all 3 runs have similar performance.

It is not unreasonable to expect that the agent can learn from pixel inputs
of the whole seen as it arguably makes the task fully observable. It is, however,
less clear as to why navigation from static front facing camera images works.
Using a grayscale static image means that the agent has to infer the depth of
the content to some extent so that it can judge what action to take. This is a
relatively difficult task and requires the neural network to partially understand
the underlying content in the image to be able to infer 3D structure. This has
been done successfully using CNNs in several cases [51], [38] and has been
shown to be useful for other tasks as well [15]. Using a depth camera such as
the Realsense R200 alleviates the problem of having to infer the depth as it
is provided as input directly. The disadvantage of using such as camera is
typical failure cases on reflective surfaces, including floors.

6.1.1 The role of the convolutional layers

In our task we need to be able to somehow process high dimensional images
into a lower dimensional vector which can be further processed by another
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6. Learning from expert inputs ..............................

Figure 6.3: Training convnet policy to imitate expert trajectories from pixel
inputs. Observer image is a 128× 128 image looking at the whole scene. The gs
run refers to the 64× 64 grayscale image from the front-facing camera. The dp
run refers to the front-facing camera image depth image.

classifier such as a fully connected neural network. The simplest and most
naive way is to downsample the input image to a manageable size containing
50-200 features. This means having an image size of roughly 7-12 pixels which
is way to coarse and will not work for most applications due to information
loss. CNNs do a similar thing by subjecting the input image to a series of
convolutions and downsampling layers, as shown in 6.2 which eventually gets
the image down to a lower size. The difference here to the naive approach is
that we downsample salient points in the image and therefore lose much less
information.

After training a CNN it is useful to inspect the network to see what it has
learned. One simple way to do this is to visualize the convolutional filters
in the first layer. This layer operates directly on the image space so they
should be interpretable as such. Figure 6.4 shows all 16 filters in the first
layer before and after training.

Surprisingly, there are no noticeable patterns in the trained filters such
as are obtained [37] from training CNNs on content classification on rich
datasets such as ImageNet [18]. This is perhaps due to the fact that we are
not learning to discriminate content and our environment is very static and
the texture variance almost nonexistant. We further inspect the training
process of the CNN and visualize the histogram of the weights in layers 1,2,3
and the activations of the embedding layer (first fully connected layer. Figure
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........................ 6.1. Imitation as a supervised learning problem

Figure 6.4: Random and trained filters from the first layer of the CNN. Filters
are plotted with interpolation for easier perception.

6.5 is a screenshot from tensorboard showing the training process of the
network on our supervised task. We can see that as the convolutional layers
train the embedding layer activation features settle down into a smoother
distribution.

Figure 6.5: Tensorboard screenshot of the histogram distributions of the filters
values in the first 3 layers of the CNN and the activations of the embedding layer.
The horizontal axis denotes filter values and the individual slices are timesteps
x10

Conclusion. In our task the CNN most likely only requires a rough under-
standing of 3D geometry in front of it and does not attempt to distinguish
any objects by texture etc.
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6.1.2 Addressing the covariate shift

We can see that the state-action mapping network generalizes to the test
trajectories which is the first sign that tells us that the policy is fit to the
demonstration examples and has learned somewhat of a meaningful policy
that imitates the human expert. This can however be misleading because
upon execution of the learned policy, the state visitation distribution will have
changed and the agent will likely find itself in different states than it has seen
in the training data. This can lead to a cascading failure of the policy where
a small mistake leads the agent to a novel state, leading to further errors
which compound and result in failure. Such an example is demonstrated in
the car steering task in figure 6.6. Deviations from the usual trajectories
compound and lead to agent crashing at the border. This issue has been
known for quite a while and investigated in autonomous car driving but there
are relatively simple fixes to this issue by using self-correcting feedback [12].
Covariate shift mostly affects dynamical systems where properties such as
velocity play a significant role. Since the NIFTi robot is mostly kinematic, we
expect that covariate shift will not be too much of an issue, but nevertheless
merits investigation.

Figure 6.6: Steering problem: Small compounding errors leading to policy failure

The state visitation distribution mismatch of the learned policy to the
supervisionary policy is often referred to as covariate shift in literature.
Earlier we defined the trajectory distribution ξ(τ ; θ) on trajectories τ =
{x0, a0, x1, a1, ..., xT } where θ is the parameter vector of a policy πθ.

ξ(τ ; θ) = p(x0)
∏
t∈τ

πθ(at|xt)p(xt+1|xt, at) (6.5)

There have been numerous works in the past that suggest techniques
of dealing with covariate shift. An algorithm called Dagger [50] works by
gathering rollouts from the current policy and querying the demonstrators for
labels on those actions. Since the trajectories are gathered from the learned
policy, the authors prove that the covariate shift eventually converges to zero.
The algorithm steps are summarized in figure 6.7

The disadvantage of this algorithm is that it requires a human expert
to provide actions on a state-action basis which is quite unnatural. It has
been demonstrated that this approach can lead to noisy action labels which
lead to poor results [39]. A different approach to imitation learning which
deals with covariate shift is Inverse Reinforcement learning [6]. The idea is
that instead of mimicking the demonstrations we learn the reward function
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........................ 6.1. Imitation as a supervised learning problem

. Step 1 : Fit policy πθ(s, a) on labelled demonstration dataset D =
{x0, a0, ..., xn, an}. Step 2 : Run policy πθ(s, a) to get unlabelled set Du = {x0, ..., xn}. Step 3 : Query expert for actions on dataset Du. Step 4 : Add new dataset to old D ← D ∪Du, goto step 1

Figure 6.7: Outline of Dagger algorithm.

which the expert is acting upon and then use that to learn a policy using
reinforcement learning. This approach however is computationally expensive
and requires solving multiple reinforcement learning problems to compute
the reward function which is unsuitable in our case since we assume that we
only have the demonstrations at our disposal and no simulator. Other state
of the art approaches such as GAIL [28] (Generative adversarial imitation
learning) have been proposed but also rely on reinforcement learning, and
thus a simulator which makes this method unsuitable for us as well.

Sequential evaluation. Having talked about various methods have been
proposed to deal with this issue, we should first examine as to how much
covariate shift affects our learned policy and if it is detrimental at all. We
evaluate 3 reactive policies learned from pixel inputs on our D25 dataset,
meaning that we run the policy on those environments and record the amount
of successful trials. Table 6.1 shows the results. Surprisingly the observer
image scores the lowest out of the 3.

GS-Observer GS-frontal Depth-frontal
Success on D25 15/25 17/25 20/25

Table 6.1: Evaluating reactive policies on D25 environments

We can see from the results in table 6.1 that covariate shift does not
affect our system significantly because from a small amount of trajectories
we are able to generalize to new randomly generated environments with good
results. A visual inspection also shows that there are no situations where a
compounding error leads to failure, although this is difficult to quantify. The
observer image gets the worst results most likely due to the larger amount
of information available in the image, requiring a more powerful network
and therefore larger dataset to infer the required state information. Another
reason is due to the small size of the robot compared to the entire image,
making inference of the robot configuration and obstacles more difficult.

6.1.3 Potential issue of multimodality

There is a potential issue with the previous imitation learning setup that can
come up the the case that the action distributions of the expert trajectories are
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multimodal for some states. Consider the following scenario. If we are training
an autonomous vehicle to avoid obstacles by swerving away from them, we
are bound to have demonstrations in our dataset where we sometimes turned
left and sometimes right to avoid the obstacle. Using MSE to train such a
policy will result in averaging, and therefore an action which might not make
sense. In this case the action will be to go straight forward into the obstacle.
This is shown visually in figure 6.8.

Figure 6.8: A scenario with two training examples, namely D1 and D2, both
turning in opposite directions to avoid the obstacle. The resultant trained action
R is the average turning action of both training examples and leads the vehicle
directly into the obstacle.

The issue of multimodality does not affect us significantly in our case, at first
glance, at least not detrimentally. This is because we are always navigating
over obstacles and not under, so there is no significant disambiguation of
the direction that a flipper should be turned to at a specific time-step unlike
the steering problem described above. However, we propose a method to get
around this problem in the case where it does affect us. To alleviate this
issue we need an alternative loss function proxy that can handle multimodal
distributions.

Discrete action spaces. If we are dealing with a discrete action space then
we could use a cross-entropy loss LCE at every timestep which allows for
multimodal outputs.

LCE(y, ȳ) = −
∑
i

yi log (ȳi) (6.6)

Where y is the true label for the given input and ȳ is the predicted output
probability vector. In neural networks outputs can be forced into probability
distributions by feeding them through a Softmax layer where each unit ȳi is
a function of neuronal activations xi:

ȳi = exi∑
j
exj

(6.7)

As mentioned above, this requires a discrete action space which is not
always possible to do. Using the most basic action discretization into 3
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..................... 6.2. Imitation using Generative Adversarial Networks

actions {up, no-op, down}, this leads to a total of 34 = 81 actions in the case
where we consider 4 flippers for our UGV robot, which is uncomfortably large,
but tractable. This approach, however, clearly does not scale to larger action
spaces due to the exponential growth. This approach would also not scale to
sequences of actions for an action space larger than 1.

Continuous action spaces. It is clear that for larger continuous action
spaces we need an alternative loss proxy. One such proxy can be in the form
of Generative Adversarial Networks (GAN) [24] which will be addressed in
detail in the next section.

6.2 Imitation using Generative Adversarial
Networks

6.2.1 GAN theory

Generative Adversarial Networks (GAN) [24] have been a successful class of
tools in deep learning for tasks such as learning complex data distributions,
video representation learning [64], image super resolution [43] and missing
data reconstruction. They have also been applied in the context of imitation
learning for robotics [28] in numerous cases .

The idea of the GAN lies in a two network architecture consisting of
a generator G and discriminator D. We assume that we have some real
data M = {x1, ...xn} ∼ p(x) where p is the distribution that we would
like G to model using the generator G using a latent variable z so that
G(z) ∼ p. The role of the discriminator D(X) is to decide whether an input
X was generated by distribution p (real) or by G(z) (fake) by outputting
a probability value of the input X being a Fake. The prediction gradient
from the discriminator is then used to train both the discriminator and the
generator using backpropagation. Essentially the discriminator is nothing
more but a loss proxy which links the distribution of the generator and
sampled data from an arbitrary other distribution. The networks form a
minimax game with a value V (G,D):

min
G

max
D

V (G,D) = Ex∼px(x)[logD(x)] + Ez∼pz(z)[log 1−D(G(z))] (6.8)

GANs can be extended to condition on inputs y to model conditional
probability distributions. The inputs y can be any additional information
such as class labels. The game value is then:

min
G

max
D

V (G,D) = Ex∼px(x|y)[logD(x)] +Ez∼pz|y(z)[log 1−D(G(z))] (6.9)
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6.2.2 Applying GANs to our problem

In our case we have a setting where we are attempting to imitate an expert
policy which is essentially a function π(a|s) which probabilistically maps a
given input state s to action a. For unimodal distributions we can model
stochastic policies by mapping states s to a Gaussian distribution mean
vector µ and diagonal covariance σ. This distribution is the easily sampled
from and backpropagated to using the reparametrization trick [35]. However,
when dealing with multimodal distributions there is no clear way on how
to parametrically predict such a distribution and sample from it using a
neural network. We can interpret the function of the generator G(z|y) as
implicitly forming a probability distribution Q(y) and sampling from it using
information from the latent variable z.

In our context of imitation learning our inputs y are the states s and variable
z is a random vector drawn from an appropriate distribution, uniform or
Gaussian. The data X = x1, ...xn are actions from the expert trajectories.
Informally, the generator generates an random action based on the state s
and random vector z and the discriminator has to decide, conditioned on s,
whether the action a was generated by the generator or whether it was a real
action from the expert trajectories.

Training GANs. GANs are notoriously difficult to train due to their unstable
training mechanics. There have been several documents and posts published
on suggestions that improve the procedure based on empirical observation.
We implement many of those suggestions in our generator and discriminator
architectures. One common issue when training GANs is that the generator
or discriminator eventually completely overpowers the opponent, leading to a
degenerate solution for both sides. In our task, we notice that the generator
often overpowers the discriminator. We attempt to remedy this by Training
the discriminator 7 times as often as the generator. Algorithm 2, adapted
from [24], gives an example of the training procedure using this setup. One
disadvantage of GANs is that we do not have a clear performance criterium
because we do not know the value V of the game. Because of this, the losses
of the generator and discriminator are only used as debugging criteria. Since
the generator is learning to generate actions conditioned on observations we
can simply evaluate it using the MSE metric on our test trajectory dataset
as a guide.

Evaluation. The GAN is trained for several thousand iterations until the
test error doesn’t go down any lower. The networks had a tendency to diverge
after a while so we early stop then once a certain threshold is reached in
the test error. We use the Adam optimizer [34] and learning rates of 10−4

for both generator and discriminator. Figure 6.10 shows a screenshot from
tensorboard showing the generator and discriminator losses as well as the test
loss on the withheld trajectories. We evaluate the GAN policy (generator) on
our test trajectories to get a test error of 0.21 and a success rate of 15/25 on
our D25 dataset. This is slightly worse than the evaluation of policies learned
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Algorithm 2 GAN imitation learning
1: Initialize random discriminator and generator parameter vector θ and φ

respectively, expert trajectories T = τ0, ...τn, learning rate α, multiplier d
2: for N iterations do
3: for d iterations do
4: Select random minibatch of {(s0, a0), ...(sn, an)} from T
5: Select random minibatch of noise vectors {z0, ...zn} from p(z)
6: Calculate discriminator gradient: gD = ∇θ 1

m

∑
i∈1..m

[logD(xi) +

log 1−D(G(zi))]
7: Update discriminator by θ = θ + α ∗ gD
8: end for
9: Select new random minibatch of noise vectors {z0, ...zn} from p(z)

10: Calculate generator gradient: gG = ∇φ 1
m

∑
i∈1..m

log 1−D(G(zi))

11: Update generator by φ = φ− α ∗ gG
12: calculate generator and discriminator losses lg, ld
13: end for

Figure 6.9: GAN structure for imitation learning.

by using the MSE metric.

Discussion. As a proof of concept, we saw that we could train imitation
learning from an available dataset using GANs as the error proxy which we
discussed would be very useful if the training dataset contained multimodal
distributions of actions for a given state. We also argued that this is most
likely not the case for our robot, or at least, it is not significant. We have to
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Figure 6.10: Screenshot from tensorboard showing GAN discriminator and
generator and losses dloss and gloss respectively, as well as MSE on test dataset,
terr. The x-axis denotes hours of training

consider that what we attempted was only a state-action learning paradigm
where we assume that the training data was generated by the user annotating
given states with actions. This, however, is not the case. The actions
were generated in a sequential manner, so it is not appropriate to model a
distribution over actions for each state, but rather distributions over sequences
of actions due to temporal correlation in the decision of the human annotator.
This could be adapted to our GAN framework by considering conditioning
not only on an observation ot, but on a sequence of observations ot, ..., ot−n.
This would also require a change in architecture for both generator and
discriminator to something that could handle sequences efficiently, such as
recurrent neural networks (RNN) which will be addressed in the next chapter.
Since multimodality of action distributions is not an issue in our case, we not
feel necessary to pursue this direction here and leave it as a suggestion for
future work.

6.3 Dealing with partial observability by relaxing
the markovian assumption

In the previous section we showed that it is possible to learn a locomotion
policy from pixel inputs of the whole scene and from static images from a
front facing camera attached to the robot. Due to the partial observability of
the front facing cameras the robot could only fit the demonstration actions
up to a point. This means that there can be crucial states between which the
agent does not distinguish using this input. It becomes clear that to learn
a better locomotion policy from on-board data of the robot the markovian
assumption does not work and that we require some sort of memory. We
require that our policy is a function of the history of states and actions. We
can safely assume that for locomotion a only limited horizon of the history
hn = {st−n, st−(n−1)...st−1} is necessary. The question then becomes how to
efficiently use a limited horizon history hn to predict the next action a given
state s. Naively feeding the whole history hn and state s to the policy to
predict an action is very computationally expensive and will most likely lead
to severe overfitting. We need a method that efficiently uses the structure in
the history hn. Ultimately, we want a function that efficiently maps every
history hn and current state s to a compact representation shn which can
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then be used by the policy to make a decision.
One way how we can efficiently compress a sequence of image data into

a compact representation is to use 3D convolutional networks. These are
an extension of the 2D convolutional neural networks that are used in 2D
image computer vision. 3D Conv nets have been applied successfully in all
sorts of time-series applications such as video analysis, motion classification
[32], temporal feature extraction [62] and 3D tasks such as CT scan analysis
[30]. At each time step we can use 3D conv nets to map a sequence of
images {qt−n, qt−(n−1)...qt} to a vector vimg of a fixed dimension m. A similar
procedure using 1D convolutions could be used on sequences of low dimensional
data inputs such as IMU readings. Although this method is not unreasonable,
it does require recomputing all these convolutions on the entire history horizon
at each time-step. An arguably better approach to represent shn would be to
use a Recurrent Neural network.

6.3.1 Using Recurrent Neural networks for history
representation

Recurrent Neural Networks (RNN) [45] are a temporal extension to vanilla
multi-layer perceptrons, first conceived around 1990 [19]. Their key feature is
that they keep a recurrent state ht at every timestep t which is a function of
the previous state ht−1 and the current input xt. The output yt is simply a
function of the current state ht. This allows the RNN to learn dependencies
over a sequence of steps since an output yt at the current timestep is a
function of all previous timesteps. In a way, we can interpret the hidden state
of the RNN as a memory that the network decides to store given previous
data, enabling it to make the correct decisions in future timesteps. The
hidden state can also be seen as a compression of the complete previous
history, but in a way, to retain only the features relevant to the task. This
whole architecture is fully differentiable and can therefore be trained using a
modification of backpropagation called backpropagation through time [65].
Training RNNs in their basic variant is difficult and faces similar issues to
shooting methods in optimal control. This leads to problems such as the
vanishing and exploding gradient problem. Failing to propagate the gradient
back through the network through a sufficient amount of steps means that it
will have trouble learning long-term dependencies over tens or hundreds of
steps which is crucial for many temporal tasks, such as the one that we are
trying to solve. Several improvements have been proposed that deal with the
above issues, the most notable of which is the Long short term memory neural
network (LSTM) [29]. This architectures deals with the issue by including
auxiliary functions, called gates in each cell of the network. These gates
regulate the flow of information to and from the hidden state, as well as the
input at each time step. This allows the gradient to bypass certain parts
of the chain in the backwards pass and travel longer distances. Figure 6.11
shows a vanilla RNN alongside and LSTM cell architecture.
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Figure 6.11: A vanilla RNN and LSTM architecture side by side for comparison.

History compression using LSTM. The question then becomes the following:
Is an LSTM network capable of representing the entire history of input images
and proprioceptive data in a compact low dimensional vector representation
which contains the necessary information to make a decision? To attempt
to answer that question we need to first think about what is inferable from
a sequence of such data. To be able to navigate through an unknown
environment the agent to be able to perceive the environment around it in
a way that is relevant to the interaction of the agent and the environment.
In the case of our robot, this means having a voxel map of the environment
around it. The second relevant part is localization. The agent needs to know
where in that environment it currently is. Classical planning techniques do
exactly that through a technique called SLAM in which the agent iteratively
constructs a map and localizes itself in it. One can argue that constructing
the whole map and planning through it is excessive and wastes computation.
To be able to navigate from point A to point B we do not need to build the
entire map, but instead, infer the path through the relevant parts.

Architecture. We propose an architecture which uses CNNs jointly with
RNN as a model which is sufficiently capable to learn a good policy from
a front facing camera attached to the robot. The input space consists of
a grayscale 64 × 64 image from the camera, as well as the current angles
of the flippers and the robots internal IMU roll and pitch estimates. The
image is fed into the CNN and the other two inputs are then joined with the
convolutional embedding before being fed into the LSTM cell. The output
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of the LSTM cell is then fed through two fully connected layers to give the
4-dimensional action. The architecture is shown in figure 6.12

Figure 6.12: A vanilla RNN and LSTM architecture side by side for comparison.

Using LSTM to learn a supervised policy. We compare the results on our
demonstration examples with the recurrent architecture using a raw grayscale
image, depth image and the grayscale image modified with a Roberts edge
detector. The motivation for using an edge detector is explained in part IV.
The architecture is trained using the Adam optimizer and a learning rate of
10−3.

Figure 6.13: Training LSTM policy to imitate expert trajectories from pixel
inputs. The gs run refers to the 64× 64 grayscale image from the front-facing
camera. The edges run refers to the grayscale image from the front-facing camera
which has been preprocessed by a gaussian filter and subsequently a Roberts
edge detector. The dp run refers to the front-facing camera image depth image.
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GS-frontal GS-edge-

frontal
Depth-frontal

Success on D25 24/25 24/25 24/25

Table 6.2: Evaluating RNN policies on D25 environments

The results show that although the RNN policies are capable of getting
significantly lower test errors on demonstration actions than their reactive
counterparts, they perform similarly on the D25 test environments. This
perhaps signifies that the D25 environments are not demanding enough to
take advantage of the temporal capabilities of the LSTM networks.

Inspecting RNN memory usage. Having learned an RNN policy, we would
like to have an idea of how much information it stores from previous inputs
in its memory. We can attempt to do this by using gradient propagation of
an output at a specific timestep with respect to all previous inputs. Formally
we are interested in the gradient magnitudes

‖∂at
∂oi
‖1 ∀i < t (6.10)

‖∂at
∂oi
‖1 =

∑
j∈{1,2..Dim(o)}

|∂at
∂oji
| (6.11)

Intuitively we can interpret this as the amount of influence that input oi
had on the decision at. Figure 6.14 shows a plot of gradient magnitudes from
the last timestep from an episode with respect previous inputs, and figure
6.15 is image showing the same thing but for outputs at each timestep.
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Figure 6.14: RNN gradients of outputs with respect to previous inputs.
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Figure 6.15: Log plot of gradient magnitudes for all timestep outputs.

We can see that the gradients decay very rapidly with each timestep. We
also notice that the decay is not monotonic. Various timesteps can lead to a
higher influence in alteration of what is being placed in the memory. This
suggests that the RNN uses to an extent the past 20-30 frames to make a
current decision, however, it is important to note that this is only a suggested
interpretation.
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Part III

Reinforcement Learning

35



36



Chapter 7
Policy learning through reinforcement
learning

In part II we considered teaching an agent a policy by providing examples and
having the agent attempt to clone those examples through supervised learning.
This was done by the agent performing actions and learning from feedback.
This method produced a decent policy which was able to generalize to new
environments of the same type as it was trained on from only a 50 training
demonstrations. One issue with this method is that the demonstration
examples are imperfect due to human error. Another drawback is that we
cannot tune the policy with respect to various criteria that we might desire
without requiring demonstration examples that specifically adhere to those
criteria which might be difficult or impossible to obtain. In this part we look
at generating policies without requirement of any human demonstrations and
that can be optimized to specific requirements provided by the user.

Learning without explicit supervision is a task which usually falls under the
umbrella term of self-training. In this learning paradigm the agent performs
sequences of actions from its current policy, called a rollout, then analizes
the actions and improves upon them after receiving some feedback from the
environment.

Figure 7.1: Agent-environment interaction. Since the interaction is a discrete
process, the actual timestep has to happen in either the agent or environment.
Here we assume that agent instantly returns action at for given ot and the
environment receives action at and returns rt+1, st+1

This is essentially a trial and error method where the agent iteratively
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performs actions and then improves upon them. The feedback is in the form
of a sparse reward. The simplest (and sparsest) case is where the agent
receives a reward of 1 if the sequence of actions leads to the agent solving the
task, and 0 otherwise. Since the agent does not receive feedback for individual
actions, but rather, for sequences of actions, it has to figure out which actions
led to good rewards. This is called the credit assignment problem. The good
actions of the agent are reinforced by providing high rewards and actions
that lead to bad outcomes are suppressed by providing negative rewards.
The task of the agent is to maximize the cumulative received reward. This
specific learning paradigm is called reinforcement learning and loosely based
on models of dopamine-based learning in mammalian brain.

7.0.2 Preliminaries

The goal of the reinforcement learning algorithm is to find a policy π which
maximizes the expected cumulative sum of rewards Rt =

∑T
t=0 γ

tr(st, π(st))
for episodes with T timesteps, where r(s, a) is the reward (feedback) that the
agent receives from the environment. The γ coefficient discounts (reduces)
rewards that occur in later timesteps which is a convenience for MDPs with a
finite amount of steps and a necessity for infinite MDPs as a means to avoid
infinite cumulative rewards. We will be dealing only with MDPs having a
finite, but varying amount of timesteps.

The value function

V π(st) = Eπ[Rt] = Eπ[
T∑
t′=t

γt
′−tr(st′ , at′)|st′ = st] (7.1)

is a concept used in MDPs which can be intuitively interpreted as how
good it is to be in a specific state st. We denote Rt as the return at timestep
t and T is the length of the episode. It is to be noted that a value function
V π(st) is tied to a specific policy π. One way to express the reinforcement
learning objective is through the expected value of the initial state.

Es0∼p(s0)V
π(s0) (7.2)

A more useful concept for reinforcement learning is the action-value function
Qπ(s, a) which gives the expected return after taking action a in state s and
following policy π afterwards.

Qπ(st, at) = Eπ[
T∑
t′=t

γt
′−tr(st′ , at′)|st′ = st, at′ = at] (7.3)

A key property of both the value and action-value functions is the recursive
Bellman Relationship.

V π(st) = r(st, at) + γV π(st+1) (7.4)
Qπ(st, at) = r(st, at) + γQπ(st+1, π(st+1)) (7.5)

(7.6)
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This is useful because it tells us that the value at the current state is equal
to the immediate reward added to the value in the next state. We can use
this property to backup values through the MDP using a method such as
TD-learning, which propagates temporal difference (TD) errors through the
MDP.

TDtarget = r(st, at) + γV π(st+1) (7.7)
TDerr = TDtarget − V π(st) (7.8)
V (st)← V (st) + α · TDerr (7.9)

This is also called the TD(0) update, because we are only looking one step
ahead (the smallest amount). The value V π(s) can also be estimated using
Monte carlo sampling by performing multiple rollouts from the state s and
using the average return as the estimate. This is an unbiased but high variance
estimate and is useful only is some cases. There exist methods such as TD(λ)
that lie between the TD(0) and monte carlo updates. Multiple methods
have been developed to solve MDPs such as Linear programming, dynamic
programming and value iteration. These methods address MDPs with discrete
states and actions and provide convergence guarantees in some cases using
contraction mappings. Most of these algorithms work well on small problems
but are very slow or completely intractable for more serious applications,
where the state-space usually increases exponentially with problem size.

Q-learning. One of the most known algorithms for reinforcement learning
is Q-learning. It is based on learning a state-action value function for the
whole MDP, and after having learned that function we can obtain the policy
simply by choosing the action with the highest value at each state.

π(s) = argmax
a

Q(s, a) (7.10)

Q-learning works by sampling actions from a sufficiently exploratory policy
π and then updating the Q-function by using the temporal error from the
recursive Bellman relationship.

Q(st, at)← Q(st, at) + α · [r(st, at) + γmax
a

Q(st+1, a)−Q(st, at)] (7.11)

The basic algorithm Q-learning algorithm is illustrated in figure 3. Typically
we use an ε - greedy policy where with a probability 1− ε we choose action
a = argmaxaQ(s, a) and a random action arnd otherwise. This is a basic
exploration strategy for Q-learning. The issue of exploration-exploitation is
explored more in the next section on deep reinforcement learning.

7.1 Deep reinforcement learning

So far we have been dealing with finite discrete state and action spaces where
a tabular format (arrays) is used to represent value and action-value entries.
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Algorithm 3 Tabular Q-learning

1: Require: Learning rate α, amount of iterations N
2: Initialize q table with zero values
3: for N iterations do
4: initialize s0
5: for each step in episode do
6: choose action a from ε-greedy policy using current Q values
7: Q(s, a)← Q(s, a) + α · [r + γ ·max

a′
Q(s′, a′)−Q(s, a)]

8: s← s′

9: end for
10: end for

To get an idea of how much memory is required for a simple problem, we
consider a grid world with n ×m cells. If the world is static and only the
agent moves then we have an n×m amount of states, meaning n×m entries
for a value function and n×m×q entries for all action-value entries, assuming
that the agent has q distinct actions available at every timestep. Even for
small grids where the environment is dynamic, with other moving entities,
the amount of states increase exponentially with the degrees of freedom of
the environment and this type of representation becomes intractable due to
memory reasons and the fact that most entries will be unvisited after learning.
In our case of the NIFTi robot, we have a continuous high dimensional state
space which is an image and other proprioceptive sensors and a continuous
action space with a dimension of 4-6. A tabular representation is clearly
not suitable for our task. The rest of this section describes how we can
use function approximators to represent Q-values for high dimensional and
continuous state and action spaces to solve difficult problems.

Function approximators have been used in deep reinforcement learning
to represent state and state-action value functions to solve many difficult
problems. Linear functions are one choice where the we can represent a value
by a linear combination of features V (s) =

∑
i∈{1..n}wi · φ(si) where wi are

weights of the function, φ is an optional feature map and si is the ith feature
of the state which can also be interpreted as dimensions, for a total of n
features per state.

More powerful non-linear function approximators such as neural networks
have been used in reinforcement learning with immense success and superhu-
man performance in tasks such as Atari game playing from pixel inputs [47]
and playing the game of GO, ultimately defeating the world champion [55].
The word Deep simply means that we are using neural networks with more
than one hidden layer.

It is common to use a convolutional neural network (CNN) to directly
learn end-to-end from pixel inputs, either estimating a value for a given state
(image), or directly as a policy function, mapping images to actions. We
make use of this architecture extensively as we would like to learn a policy
from observed camera inputs in an end-to-end fashion.
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Many works have been published that provide methods of adapting rein-
forcement learning algorithms to work with neural networks. Unfortunately,
when using non-linear function approximators most, if not all theoretical con-
vergence guarantees are lost and the topic remains an active area of research.
Training dynamics of large networks can also make training slow or unstable
and require special techniques and adaptations to make them work such as
batch normalization [31], dropout [57] and proper initialization [22]. A large
number of parameters, such as in deep networks leads to other problems such
as overfitting and large sample complexities leading to longer training times.

7.1.1 Deep Q learning

The first successful adaptation of Q-learning to difficult problems was playing
atari games from pixel inputs [47]. Since then, DQN has had staggering
success in the field and has been shown to be a good general algorithm
that can solve a vast array of reinforcement learning problems. The basic
principle is the same as in tabular Q-learning, adapted for use with function
approximators. There are some key additions that were made to make the
training stable. A deep neural network Qφ(s, a) parametrized by parameter
vector φ is used to approximate the state-action value function, mapping a
given input and action to the expected value outcome. In the training phase
episode rollouts are gathered using a typical ε-greedy fashion and the updates
are in the form of gradients with respect to the mean squared temporal
difference error at each timestep. Due to unstable training mechanics it was
empirically found that it is advantageous to keep a target network Qt which is
used to sample new actions and is then updated as a moving average between
the current and target networks using a small update constant τ

φt ← φt · (1− τ) + φ · (τ) (7.12)

Due to the lack of i.i.d samples, highly correlated updates to large models
such as deep neural networks can be detrimental. One method found by the
authors to alleviate this issue is to keep a replay buffer from which state
transitions are sampled and according to which the value network is updated.
This makes the samples and therefore the updates less correlated, leading to
greater stability.

Continuous action spaces. One thing to note is that the DQN works very
well on high dimensional state spaces but expects discrete actions due to the
requirement of being able to compute the maxaQ(s, a) for the Q-learning
updates. If we consider our NIFTi robot with 4 flippers we could discretize
each flipper into 3 actions {up, no-op, down} which leads to a total of 34 = 81
actions. This is a relatively large amount of actions, albeit tractable, and
might lead to optimization issues and hyperparameter tuning requirement. In
any case, we want to be able to control the flippers in a continuous manner.

There is no straightforward way how to find the necessary maxaQ(s, a) in
a continuous action space. One thing that we attempted was to use gradient
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ascent at every state s to find the argmaxaQ(s, a) using the following iterative
update rule.

a← a+∇aQ(s, a) (7.13)

We found that unfortunately this method does not work, at least not in
this naive way. There can be many reasons. The first is that deep non-linear
functions have a multimodal landscape which means that we can get easily get
stuck in a local optimum. There are, however, studies that suggest that local
minima in neural networks are not so problematic and using gradient descent
optimizers with momentum can overcome some of these issues. Another issue
is the learned landscape of the Q function. Even though we expect neural
networks to generalize from state to state, optimizing on unknown terrain can
be expected to be more difficult. Even if this optimization process did work,
it would still be impractical due to the computational overhead required at
each step to optimize the maxaQ(s, a).

DDPG. A method that directly extends Deep Q-learning to high dimensional
action-spaces is the Deep Deterministic Policy Gradients method [44], which
is also the algorithm that we use to learn a locomotion policy for the NIFTi
robot. The DDPG is an actor-critic method where the actor is our policy and
the critic is a function that evaluates the policies action. This is implemented
as two separate neural networks; One for the actor (the policy), mapping
states to actions, and an additional critic which is the Q-function. The role
of the critic is to provide a proxy for the environment feedback which the
policy can use to improve itself. The core of this method relies on the family
of algorithms called policy gradients [58], which is a popular method to solve
problems with continuous action spaces. The policy gradient is simply a way to
relate the effect of the policy on a set of collected trajectories in a differentiable
manner. The fundamental result of the policy gradient algorithms is the
policy gradient theorem [58], [56], which reduces the performance gradient to
a single expectation.

∇θJ(πθ) =
∫
S
ρπ(s)

∫
A
∇θπθ(a|s)Qπ(s, a)dads (7.14)

= Es∼ρπ ,a∼πθ [∇θlog πθ(a|s)Q
π(s, a)] (7.15)

Where s, a are the states and actions, J(πθ) = Es∼ρπ ,a∼πθ [r(s, a)] is the
performance objective, ρπ(s) is the state distribution, πθ is a policy function
parametrized by θ. Once the gradient is obtained, we can simply ascend the
parameters of our policy in the appropriate direction. The advantageous
property of this theorem is that even thought the state distribution ρπ(s)
depends on the policy parameters θ, the gradient of the parameters does not
depend on ρπ(s).

In the DDPG algorithm the critic is updated using the TD-error Bellman
backup, similarly as in tabular Q-learning. The actor is updated from the
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action gradient of the Q function through the chain rule with respect to the
actor parameters.

∇θµJ ≈ Est∼ρβ [∇θµQ(s, a|θQ)|s=st,a=µ(st|θµ)] (7.16)
= Est∼ρβ [∇aQ(s, a|θQ)|s=st,a=µ(st)∇θmuµ(s|θµ)|s=st ] (7.17)

One way to think about it, is that the gradient ∇aQ(s, a) gives the direction
that the action a should be moved in order to get the greatest increase of
value Q at state s, and using the chain rule we can update the actor (policy)
µ(s|θµ) with respect to actor parameters θµ. The whole DDPG algorithm, as
taken from [44] is shown in figure 4.

Algorithm 4 DDPG algorithm
1: Require: Learning rate α, τ , amount of iterations N , minibatch size B
2: Initialize actor µ and critic Q network parameters θµ, θQ as well as their

target Q′ and µ′ counterparts
3: Initialize replay buffer R
4: for N episodes do
5: Initialize random process N
6: Initial observation s1
7: for each step in episode do
8: choose action at = µ(st; θµ) +Nt
9: step the environment using action at and observe reward rt new

state st+1
10: Store transition (st, at, rt, st+1) in R
11: Sample random minibatch of size B from R
12: Set target yi = ri + γ ·Q′(si+1, µ

′(st+1; θµ′); θQ′)
13: Update critic by minimizing the loss: L = 1

N

∑
i(yi−Q(si, ai; θQ))2

14: Update the actor policy using the sampled policy gradient:
15: ∇θµJ ≈ 1

N

∑
i∇aQ(s, a; θQ)|s=si,a=µ(si)∇θµµ(s; θµ)|si

16: Update the target networks:
17: θQ

′ ← τθQ + (1− τ)θQ′

18: θµ
′ ← τθµ + (1− τ)θµ′

19: end for
20: end for

7.1.2 Applying Deep RL to the NIFTi robot

We adapt the DDPG algorithm to the problem of controlling flippers of the
NIFTi robot. The reason DDPG was chosen over other state of the art RL
algorithms such as TRPO [52] and PPO [53] is that actor-critic methods
tend to be the most sample efficient methods and that DDPG is an off-policy
algorithm. Off-policy means that we evaluate a different policy to which the
current rollouts are being sampled from. This allows us to deal with the
exploration problem separately. The environment is again a closed, walled-off
mini arena as shown in figure 5.1 where the robot starts on the left side and
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the task is to navigate over the navigable obstacles to get to the finish line
on the right side. Implementation-wise, this task is formed very similarly to
the OpenAI gym environments [14] which are a set of environments created
by OpenAI, defining a simple API compatible with reinforcement learning.
We define the environment for the NIFTi robot according to this API so that
it can be compatible with readily available RL algorithms with little or no
modification.. The environment starts in a deterministic initial state s, given by obser-

vation o which is returned by the reset() function.. A step(a) function accepts an action, and returns a tuple (o, r, d) where
o is the observation, r is the reward r(s, a) and d is a boolean variable
denoting whether the episode has terminated. Upon termination the reset() function is then used to reset the environ-
ment to its initial state and returns an observation o.

The state transition function is given by the simulator itself which is
implemented by an inner stepsim function. The observation, reward and
termination conditions are user specified and have a profound effect on the
performance of the RL algorithm.

Observation. As the observation at each timestep (state of the MDP)
we will use the front facing depth image, as it had the best performance
in the supervised task. The depth image has a resolution 64 × 64 and is
preprocessed by clipping depth and NaN values to 1.5 meters. This input
requires a CNN with over 103 parameters to process. Although the original
authors of the DDPG algorithm demonstrate that there is no significant issue
(besides more difficult training dynamics) to use DDPG straight on pixel
inputs, we initially attempt to train the policy using a provided embedding
of the image in attempt to save computational resources. There are several
options on how to do this. We will explore the options which involve taking
an already pre-trained policy from a similar task and using a subset of the
neural network layers, namely the convolutional layers as feature extractors.
One such candidate is to use the first fully connected layer of the policy
used in training the policy from demonstrations in part II, giving a vector
φ(o) ∈ R64. This policy used exactly the same input and the task was to
map input images to actions in order to imitate the expert. We can therefore
assume that it encodes relevant features that enable the policy to understand
the configuration of the robot and infer the necessary information of the
environment around it for locomotion in general.

Reward. The reward given to the agent is essentially the only source of
information which it receives about how well it is doing in the environment
which makes it a crucial part of designing an environment for RL. It is
important to consider the behavior of the robot in mind when designing the
reward function because it can often times happen that the agent abuses the
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reward and performs unintended actions. Since we want the robot to traverse
obstacles and get to the other side, it makes sense to provide a reward rdist for
every δx travelled at each timestep, or the velocity ẋ at which it’s travelling.
This is scaled up by a coefficient cdist so that the average travelled cdist · δx
value without obstacles is around 1 at each timestep. A common penalty
imposed on agents in reinforcement learning is the timestep penalty where
the agent gets a small valued penalty for every taken step because we usually
want to achieve a task as fast as possible. We use a timestep penalty of
tp = −0.6. The last penalty that we will use is the euclidean norm of the
actions ‖a‖2, also called the control effort in the context of optimal control.
This penalty is also scaled by a coefficient ceff so that a full control effort
has a penalty of -1. The total reward is then

r(s, a) = cdist · (xt − xt−1) + ceff · ‖at‖2 + tp (7.18)

As shown above, there are a few hyperparameters that have to be tuned
to get a reasonable behavior. A set of coefficients which highly rewards rdist
in relation to the others sometimes results in a behavior where the agent
is locked and stays in an obstacle, causing the simulator to push the robot
back and cause a periodic rocking motion which gets high reward but no
result. Another issue excessive angles of the flippers if the control effort is
not penalised enough, and a reluctance to do any action if it is set excessively
high. It is also important not to have very high rewards because they can
generate high value gradients and make the training process unstable.

Termination condition. The episode is terminated if:. The robot crosses the finishline. The maximal amount smax = 100 of steps has passed. The angle of robot IMU reading is too high (the robot is tipping over). The robot gets stuck in an obstacle

The last one requires the most tuning. To detect if the robot is stuck, a
progress score is used which maxes out at a certain value and is decayed
when the robot is not making any progress on the x axis or rotational axes.
It is important that the detection of this state works well, otherwise the
trajectories will consist of many steps of stuck configurations yielding no
learning benefit.

DDPG hyperparameters. For the most part, the default parameters of the
algorithm itself yield a successful training process. These include the learning
rates of the actor and critic network, set at 10−4 and 10−3 respectively. The
replay buffer size is set to 106 The target network update rate τ = 0.001
gives stable updates, although a smaller update results in faster learning.
The exploration noise used is the Ornstein Uhlenbeck process which is the
recommendation by the authors in the original publication. One of the most
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important parameters is the discount factor γ which weighs the importance of
immediate rewards versus delayed rewards. We set a γ value of 0.95 so that
the maximum obtainable cumulative reward did not exceed ∼ 50. This was
done to limit the update gradients of the critic network and also so that the
critic does not have to predict a very high Q value in the order of hundreds.
In the appendix we take a look at possible issue with regressing on very high
numbers with neural networks.

Training variations. To create the navigable obstacles, we use a set of
available objects in Gazebo and after every episodes, randomly move the
obstacles in the x, y and z directions in a way which keeps the task challenging.
This is done so that the agent learns a robust policy and doesn’t simply fit to
one specific obstacle manifold. This is unlike most reinforcement environments
which are static or deterministic.

Replay buffer and dynamically changing environment. Since the DDPG
uses a replay buffer of past state-action transitions which are randomly
sampled and learned from, one could ask how it can be compatible with a
constantly changing environment. This is a big obstacle in using DDPG for
multi-agent environments where using past experiences does not necessarily
make sense because the policies of the other agents differ at the current time
step and it makes sense to do something else. It is not, however, a problem
in our case because although the environment changes, the task itself does
not. The abstract notion of navigating over obstacles does not change. If
it had been the case where the physics of the simulation changes over time,
then this might have posed an issue for the algorithm. In any case, this is
a specific issue of using past experiences from the replay buffer, and in the
worst case, the replay buffer could be removed or severely shortened, but at
the great expense of sample efficiency and training stability.

Initial experiments. We perform some initial experiments using the reward
function specified above and also compare this to the sparse reward function
where the agent gets a 1 for crossing the finishline and 0 otherwise. The
sparse reward runs usually take much longer to start doing something sensible
and are less stable. Figures 7.2 and 7.3 shows screenshots from tensorboard
of a sample of the training progress of the algorithm. The algorithm takes
about 12 hours to train to saturation. This is mostly due to the very slow
simulator which is running at a rate of at most 3x realtime. Figure 7.4 shows
screenshots of various palette configurations that the robot is trained on.

7.2 Exploration

The the context of reinforcement learning, exploration refers to performing
sequences of actions which lead to unvisited states of the underlying MDP.
Typically we do not know the rewards attained in each state and would like
to discover them. In the general case the rewards are stochastic and admit an
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Figure 7.2: DDPG run on NIFTi robot using sparse reward function. X axis
denotes episodes.

Figure 7.3: DDPG run on NIFTi robot using Shaped reward function. x-axis
denotes episodes.

Figure 7.4: Screenshots of various trained palette configurations

unknown distribution for each state and action. Since the goal of reinforce-
ment learning is to maximize cumulative future reward, the task becomes
not only to visit the most novel states, but to exploit information about
already visited states to get higher rewards. This is called the exploration-
exploitation problem. Exploring efficiently is important especially in DRL
where the sample complexity is high and therefore computation times very
long. Improvements in exploration can significantly shorten training time
and improve solution quality.

There are several exploration techniques that have been developed in
classical reinforcement learning. The simplest approach is to simply select
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7. Policy learning through reinforcement learning ......................
random actions with probability ε and use the currently learned policy
otherwise. This is called the ε−greedy policy. A more sophisticated approach
is to track the visitation count of each state, along with its reward distribution
(or simple the average), and prefer to visit states with low visitation counts
and high reward. In the context of very small MDPs the exploration can even
be computed optimally using Bayesian learning, but is intractable for most
problems. The problem of exploration of exploration becomes even more
tricky for problems with continuous and high dimensional state and action
spaces. We will examine some of the techniques that we used for the NIFTi
robot locomotion task.

7.2.1 Random processes

We first take a look at applying a simple ε−greedy approach. This essentially
means that we will be introducing random noise at each time step in attempt
to visit novel states. This can be problematic for systems with inertia or
slow-moving parts, which is the case for the NIFTi robot. The flippers have an
angular velocity lower than 45 deg s−1 which means that if we inject random
noise at each time step, the result will be erratic movement about the zero
point meaning that we will not explore the effect of interesting configurations
of the flippers. What is instead required is temporally-correlated noise such
as a random process.

Figure 7.5: Samples from Gaussian process and Ornstein Uhlenbeck process

The process used in the original DDPG publication was the Ornstein-
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Uhlenbeck process [63] which models the velocity of a Brownian particle with
friction. The calculation of the noise value at timestep t is given by:

vt = vt−1 + θ · (µ− vt−1) · dt+ σ ·
√
dt · ρ (7.19)

Where θ and σ are hyperparameters of the system, dt is the time delta
between steps, and ρ ∼ N (0, 1)m wherem is the dimension of the action-space.
Another way to get temporally correlated noise is to use points sampled from
a Gaussian process with an exponential kernel. The parameters are fit such
so that the noise values are smooth and range roughly from [−1, 1]. The
time scale is such that the robot flippers have enough time to follow it. This
method of exploration works fairly well on many environments, including our
NIFTi robot environment and achieves a decent result.

7.2.2 State-based (Hashing)

A recent idea in deep reinforcement learning was to revisit count-based
exploration [60]. In principle, what we want is for the policy to prefer actions
which lead to novel states. One way how we can achieve this is to reward the
policy for performing such fruitful actions.

Since we are working directly with high dimensional pixel-state images with
dimensions of approximately 104, it is more practical hash lower-dimensional
feature embeddings of the images. Since a convolutional neural network is used
to map input images directly to actions, it’s possible to use an intermediate
layer of the network as a feature vector which contains relevant parts of the
image for further classification of an action. The question is which layer to
take features at. Layers closer to the pixel-space have more general lower-level
features that pertain directly to image processing, such as edge detectors,
and features higher up are more relevant to the task at hand. We will use
features in the first and second fully connected layers. The architecture is
shown in figure 6.2. We could also use an autoencoder [9] to embed the image
into a latent representation which could then be used as our feature vector.

Since the state-space is continuous and high-dimensional, we require some
discretization method. The authors [60] suggest a technique called locality-
sensitive-hashing (LSH) to convert high dimensional continuous vectors to
discrete hash codes which are more manageable. One such computationally-
efficient method is the Simhash algorithm which buckets vectors according
to their angular distance metric [16]. The Simhash mapping is shown in
equation 7.20 where a k-dimensional hash code g(s) is produced from state s.
A is a k ×D matrix containing entries drawn from a gaussian distribution
N (0, 1). Parameter k controls the granularity of the input separation. φ(s)
is an optional feature embedding of the state s.

g(s) = sign(Aφ(s)) ∈ {−1, 1}k (7.20)

The SimHash function can bucket continuous states into discrete buckets,
allowing counting of the states. The auxilliary exploration reward can then
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7. Policy learning through reinforcement learning ......................
be provided as addition to the regular reward. The total reward rt(s, a) is
then

rt(s, a) = r(s, a) + β√
N(s)

(7.21)

where β is a constant term which weighs the exploration bonus and N(s)
denotes the state count. The authors of the this method demonstrate signifi-
cant improvements in the training time in some environments, especially in
presence of sparse rewards.

Figure 7.6: Average cumulative reward using random exploration and additional
state-based hashing. Random policy is for reference

Evaluation. We compare the cumulative attained reward of a policy trained
with sparse reward using random exploration and a policy using random
exploration + state based hashing with a β exploration coefficient of 0.1
and granularity index k = 10 for a total of 1024 buckets. Figure 9.1 shows
the average cumulative reward from 15 runs of each policy. The plot shows
evidence that the state-based approach increases cumulative reward in the
earlier stages but actually hurts performance further on. It is to be noted that
each RL run has a high variance in terms of progress so 15 runs might not be
statistically significant. Each run takes over 3 hours so it is difficult to get
more data from a single PC. In addition, the runs were kept short, again due
to computation time which means that we did not explore the full potential
of the method here. Another potential source of the problem might by badly
set hyperparameters, in this case the exploration and granularity coefficient
and the layer which we use as the state embedding. Unfortunately, again due
to computational reasons it is infeasible to perform a hyperparameter search
in this case.
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Chapter 8
Reward shaping

When defining the task for an agent to solve in an environment we usually
have a goal state in mind, that is, a state or set of states that we want the
agent to reach. The reward for the agent can then be defined as a value of 1
when the agent reaches a goal state, and 0 otherwise. Assuming a sufficient
exploration and a discount factor of γ < 1, the agent will eventually learn a
policy which in expectation minimizes the amount of steps taken to reach the
goal. In this case, the only way that the agent can get any feedback at all, is
to accidentally stumble upon the goal while exploring in an MDP which it
knows nothing about. Once the agent reaches the goal then the actions that
led to the goal will be reinforced and it will then reach the goal with a higher
probability, with the probability of success increasing with every successful
reaching of the goal. The problem is that in many environments, it can be
practically impossible for an agent to reach the goal by a sequence of random
actions. Figure 8.1 demonstrates an example of such an environment.

Figure 8.1: Montezumas revenge. A notoriously difficult environment for rein-
forcement learning due to the sparse delayed reward. To get any feedback the
agent has to traverse the ladders to get the key and open the door while avoiding
the skull and falling from heights.

In such cases we need to somehow guide the agent towards that goal by
adding auxilliary rewards. This is called reward shaping. In essence, the
designer of the environment uses their domain knowledge to assess what the
agent should and should not be doing in order to achieve a certain goal and
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8. Reward shaping....................................
implements this knowledge as a reward function. In the NIFTi robot case, we
shaped the reward by adding a bonus when the robot successfully travelled in
the direction of the goal which is a relatively common heuristic. We also do
not want the robot using the actuators needlessly so a control effort penalty
was added. Reward shaping directly affects policy, often leading to undesired
results so it has to be done with care and sparingly. There are cases, however,
where we would like to shape the behavior of the robot to suit our specific
needs.

8.1 optimality with respect to specific criteria

We consider the locomotion task of a generic robot. There can be various
criteria which we would like the locomotion task to respect. These criteria
can include: Fastest time, lowest energy usage, most stable gait. We consider
and optimize the NIFTi robot for the following criteria and compare results
to the default locomotion policy that we used in our initial experiments with
no specific criteria in mind.

Least steps. This is the most common criterium that we use to evaluate
an agent in an environment. The reward that leads to this behavior can be
binary where the robot gets a value of 1 for crossing the finish line and 0
otherwise. For this we require that the discount factor γ is strictly smaller
than 1. The solution to the mdp will then simply be the shortest path to the
goal. If γ = 1 then every state in the mdp that leads to the goal state will
have a value of 1 eventually, meaning that every path would be the shortest
path.

Smallest control effort. This criterium is useful for when energy savings are
an important factor in the mission. Here the cost includes a very high penalty
for control effort. The control effort is calculated by simply penalizing the
norm of the action magnitudes, similarly to what is described in the reward
section, but with a higher coefficient.

Smoothest ride. The robot might be carrying fragile cargo or might be
itself fragile and it might be desirable to use a policy which leads to smooth
locomotion behavior. The way we quantify smoothness is by analyzing
high frequency changes in the IMU readings, in both translational and
rotational axes. A simple way is to penalize a norm of the change between
two consecutive readings weighed by a coefficient vector. More advanced
methods could involve keeping a queue of values and applying a windowed
FFT computation on the queue to obtain a clearer frequency criterium.

Level platform. We might require the body of the robot to maintain a level
orientation if possible to obtain quality footage from an onboard camera.
This can be easily implemented by simply penalizing any deviations of the
robot body from the default position using IMU readings.
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Figure 8.2: Screenshot of πlevel, using flippers as support to stay level.

To evaluate policies trained on the above criteria we use our D25 environ-
ments which consist of 25 randomly generated palettes at various positions.
Policies {πsparse, πeff , πsmooth, πlevel}, correspond to policies trained using
the four criteria described above in their respective order. Each policy is
evaluated on D25 according to all four optimization criteria. The results are
shown in table 8.1.

Comments on performance. We can see that the πsparse has a slightly lower
performance in terms of success rate and is worst off in all other regards which
is expected given that we don’t optimize for any of these. The πeff policy
has a mean actuation energy several times lower than the other policies, but
at the cost of rough locomotion. One interesting observation made on πeff is
the difference in the way it performs the stage B maneuvre 10.5. Most policies
use their back flippers to raise the robot forward, whereas πeff uses the front
flippers to shift the center of mass forward which is more energy efficient.
Both πsmooth and πlevel successfully minimize their own main criterium with
respect to the other policies. One downside of the πsmooth policy is that since
we optimized only for roll and pitch smoothness, the policy allows the robot
drop vertically when running off a palette since this is not penalized. In
hindsight, vertical acceleration should also have been part of the criterial
function. for the πsmooth policy. Figure 8.2 shows a screenshot of the πlevel
using its flippers to support itself after rolling off a palette so that it stays
level for as long as possible.

Policy Finishlines
passed

Mean
actua-
tion

Mean IMU
activity

Mean
angular
deviation

πsparse 18/25 5.39 0.038 0.063
πeff 20/25 0.98 0.0414 0.066
πsmooth 20/25 2.17 0.011 0.0398
πlevel 21/25 2.69 0.027 0.0344

Table 8.1: Comparison of policies trained according to various criteria, evaluated
on the D25 environments. All policies are reactive using a front facing depth
image, as well as roll, pitch and flipper angle data as inputs.
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Chapter 9
Learning a recurrent policy

In part II we discussed how locomotion from static front-facing camera images
is difficult due to the partial observability of the task. One suggested way
around this issue was to use Recurrent Neural network cells as a compact
representation of the history at every time step.

One simple way how to learn an RNN policy is to imitate a learned reactive
policy in the simulator. This can be advantageous if the reactive policy is
fully observable but has an impractical input requirement such as multiple
observer images from various angles. In this case the RNN could simplify the
input requirement by learning from such a policy and then enable deployment
in the field from just a front facing camera.

Another method would be to adapt a reinforcement learning technique, for
example, the DDPG algorithm to use RNNs. Using RNNs in reinforcement
learning is significantly more difficult due to implementation reasons and
unstable training mechanics which is one of the reasons why an alternative
method was provided at the beginning of this chapter. The adapted policy
update for recurrent networks was derived by Hess et al [26] to be:

∂J(θ)
∂θ

= Eτ [
∑
t

γt−1∂Q
µ(ht, a)
∂a

∣∣∣∣
a=µθ(ht)

∂µθ(ht)
∂θ

] (9.1)

where ht is the observation-action history. The DDPG algorithm has to
be slightly modified to adjust for the above policy update; we now have to
save and sample whole trajectories to and from the replay buffer. Both the
actor and critic networks have recurrent layers in them. The architecture for
the actor is the same as in chapter II, as shown in figure 6.12. The critic
network is similar, with the main difference being that the action is added as
an auxilliary input to one of the fully connected layers. The actual gradient
update of both the actor and critic do not change as we are using autodiff
software (Tensorflow) which propagates the gradient through time through
the whole episode.

Training details. The input to the agent at each time step is again a front
facing grayscale camera image, the current flipper angles and the roll and
pitch from the internal IMU. Having already compared the effect of using
various images at input, we only test the default grayscale image for this
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9. Learning a recurrent policy...............................
algorithm. The action space is again a ∈ R4. The learning rates are increased
by half an order of magnitude compared to the reactive DDPG in the previous
section. This is so that we get a decent gradient propagation through time.
The training is done by sampling a small batch of whole episodes from the
replay buffer at the end of each episode and training both actor and critic on
the batch. We train the policy using the default shaped reward function with
a distance motivation, timestep and control effort penalties as it provides the
most stable and fastest training.

Results and discussion. A visual inspection shows that the RNN policy
trained with RL performs better than its reactive counterparts. It has a
24/25 success rate on our D25 dataset. When trained using reward shaping
it performs better in criteria such as smoothness probably due to the ability
of the policy to keep important features in memory that it cannot see from
the front facing image.

Figure 9.1: Screenshot from tensorboard showing training progress of DDPG
with RNN policy. Max Q value shows the maximum Q value in the episode,
Qloss denotes the TD-error in that episode.
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Part IV

Experiments in real environment
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Chapter 10
Simulation to real robot transfer

So far we have learned locomotion policies in the simulator on a model of the
NIFTi robot. The advantages of a simulator is that we can programmatically
alter aspects of the environment, run the robot at faster than realtime speeds
and perform an essentially limitless amount of runs without having to worry
about mechanical wear, as we would get on the real robot. The disadvantage
is that the model differs from the real robot, sometimes significantly. This
means that transferring a policy learned on a simulator to the real robot
might work well, in some cases with reduced performance, or completely
fail in other cases. In the case of the NIFTi robot, we have an essentially
kinematic system, but the physics of modelling the traction of the flipper
tracks on various objects could be a weak point. Another issue might be
a mismatch in the sensor input distribution, especially when using visual
sensors such as cameras. Even though the simulator environment attempts
to model the real environment, the visual appearance is significantly different
than the real world.

Transferring learned policies from simulator to the real environment has
been a very active area of research in the past few years. It has become an
important topic since policies are being trained in an end to end fashion di-
rectly from pixel inputs. Several approaches have been proposed with varying
success. Most of these approaches fall into the following three categories:

Finetuning. The finetuning approach is relatively simple and consists of
retraining the already trained policy in the target environment. This is
usually done carefully using smaller learning rates and typically retraining or
reusing only a portion of the neural network. This works very well in many
supervised learning cases in computer vision [67], [49]. A specific example
is to use convolutional layers from a CNN trained on one domain such as
ImageNet [18] and continue training them on a new domain. This assumes
that the lower level feature detectors are general and reusable [67] and that
we are finetuning to perform a different higher level task. In the case of
simulation to real world transfer it is the other way around. We assume that
our policy should remain the same at the higher level and only low level
feature detectors should be slightly finetuned to recognise the new domain.
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10. Simulation to real robot transfer............................
Using robust features. Another approach how to successfully transfer
policies from a source to a target domain is to use robust features or to learn
on a sufficiently diverse source domain in hope that the policy will be robust
to changes and therefore generalize to the target domain. Robots have been
trained in simulators with randomly varying parameters and have shown that
this can vastly improve policy robustness. An effective approach in dealing
with discrepancies in visual inputs is to use textural randomization during
training in simulation to learn robust feature detectors in the convolutional
neural networks [61]. Other methods such as adversarial feature learning
have been proposed to learn more robust features [54].

Image modification. In many cases, the discrepancies of the dynamics of
the system are not an issue, but the domain shift in the visual inputs is. We
can denote the images that come from the source domain as os ∼ Dsource and
images from the target domain as ot ∼ Dtarget. It is possible to construct
a function G which maps a source image to the corresponding image in
the target domain such that G(os) ∼ Dtarget. Such a function can be a
convolutional neural network. One way that such a network can be trained is
using GANs [13].

10.1 Setup description of experiments on real
robot

To examine how our learned policy on the simulator generalizes to the physical
NIFTi robot several tests are performed on various learned policies. Mostly
we are interested in the following two topics.. Does the physical model generalize?. How do various different inputs generalize?

Used transfer techniques. In the previous chapter we mentioned 3 broad
categories into which most transfer methods fall into. The simplest one was
finetuning. We will not consider this as the robot is relatively slow and it
would require a few hours of effort to gather several tens of trajectories on
various obstacles. The second method, learning or using robust features is
probably the simplest and most practical to implement. The third method
would require the most work and algorithm tuning. We propose two different
techniques that could be used for our task. We consider the following inputs
and their transfer potential.. Grayscale input image learned with random gamma shifts to account for

various lighting conditions and texture intensities. Preprocessing the grayscale image by a Roberts edge detector. The
intuition of using an edge detector is that the image will look similar in
the simulator and the real robot, minimizing the domain shift for the
convolutional neural network.
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Figure 10.1: Comparison of front facing grayscale image from gazebo and R200
sensor at 64 × 64 pixels

Figure 10.2: Comparison of front facing grayscale image preprocessed by edge
detector from gazebo and R200 sensor at 64 × 64 pixels

. Using a depth image. The depth image is expected to generalize due to
the image being content and texture agnostic, meaning that the depth
image should look the same for a specific scene and a model of that scene
in the simulator. In reality this is not the case as the real depth image
will have significantly different characteristics, including heavy noise and
reflectance on various materials. The depth image was preprocessed by
clipping all the pixel values to 1.5 meters. All NaN values are set to the
furthest 1.5 meter values.

Tested policies. We will be testing the following policies on the real robot.
The actual method of learning for the policies in this case is not important as
we are examining not the policy performance but the transfer performance.
For this reason we simply use policies that were carefully learned using
supervised methods from 50 trajectories that enable to navigate the real robot
in a safe manner to avoid damage.. RNN policy using default grayscale front facing image which was trained

with randomized gamma shifts and pixel noise for robustness to lighting
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Figure 10.3: Comparison of front facing depth image from gazebo kinect model
and R200 sensor. In this image the pixel values are taken from a screenshot and
do not correspond to the preprocessed depth values used by the algorithm.

changes.. RNN policy using default grayscale front facing image preprocessed by
an edge detector.. RNN policy using the depth image.

Real robot details. There are several important details that have to be
addressed when performing the transfer from the simulator to the real robot
to retain consistency of the model and to minimize perceptual difference for
the policy.. Step size In the simulator we use a 200ms step size. This is a rather large

step size but since the NIFTi robot is essentially a kinematic system,
this is not an issue. On the real robot this step size is emulated by a
sleep delay of 200ms in the control loop. The simulator model for the
robot was modelled so that the velocity of the tracks and the flippers
matches the real robot. When training the RNN policies in the simulator
we random step sizes from 100ms to 300ms so that the policy stays
temporally robust and does not fit to what it expects the simulator to
produce. This should partially account for the change in physics between
the simulator and the real robot.. Physical robot parameters The real robot flipper torque is limited. A
value for the torque is experimentally found on the real robot and adjusted
in the simulator model so that the policy does not learn maneuvers in the
simulator that it cannot perform on the real robot. The track torques
are plentiful on the real robot so it is an insignificant parameter.. Camera details In the simulator we use a model of the Kinect [20]
RGBD camera to obtain grayscale and depth renders from the front
facing camera. On the real robot a realsense R200 camera is used
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which unfortunately has different parameters and characteristics. The
parameters in the simulator Kinect model are adjusted as much as
possible to match the R200. The horizontal field of view which is
adjusted to 70 deg respectively. The simulator does not support changing
vertical field of view. It is also important to match the position of the
camera in the simulator and real robot. The R200 is mounted on the
real robot using a 3D printed structure attached to the body of the
robot. The transformation from the base link of the robot to the camera,
including the camera mount is calculated and adjusted appropriately in
the simulator.

Hand tuning parameters. The camera angle was set to a smaller value that
in the simulator because otherwise the robot did not recognize obstacles in
front of it. This is most likely due to the discrepancy in position and camera
characteristics between the simulator kinect model and the Realsense R200
on the robot. Both cameras differ significantly in their field of view angles
which could not be adjusted in the simulator.

Results. The robot was tested on how well it can navigate over a real
wooden palette which is approximately the same size as the models used in
the simulator to train the policies. The robot is placed about half a meter
from the palette and the user controls the velocity of the robot using a
connected gamepad. The robot must configure its flippers appropriately so
that it navigates the palette using only data from the front facing camera,
roll & pitch data and the current flipper state angles. The robot successfully
navigates the palette without the requirement of human intervention roughly
half of the times. We evaluate the traversal of the palette, denoted in 4 stages
described below.

. Stage A as the part before the robot has come close to the obstacle and
has to configure the flippers as to start climbing the object. Ideally, the
flippers should be more or less in a neutral position before it reaches the
obstacle which shows that the robot is not falsely perceiving obstacles
in front of it. Upon approaching the obstacle it should recognize the
obstacle and raise one or both flippers to an appropriate angle. In our
experiment the flippers were more or less neutral, with some movement
before reaching the obstacle. The robot always recognizes the obstacle
in front of it when approaching it. We also performed an experiment
where the palette was placed in the way of only one of the flippers, and
the result is that the robot successfully only lifts the required flipper to
traverse the obstacle, meaning that it has a non-degenerate horizontal
object detection resolution.
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(a) : Correct flipper configuration
(b) : Typical failure case where the
robot will abruptly tip forward and po-
tentially cause damage upon impact

Figure 10.5: Stage B, ascent of the palette

Figure 10.4: Stage A of the traversal, recognizing obstacle ahead

. Stage B as the part when the robot is climbing the palette and it needs
to lower the front flippers to shift the center of gravity forward and lower
the back flippers so that the back of the robot rises. This part is critical
because if not done appropriately, the robot will ascend on an angle, and
the tip over to the front abruptly after the half way point, leading to
a relatively strong physical impact of the front flippers onto the top of
the obstacle potentially damaging the robot. In our experiments this
stage is sometimes problematic. The robot sometimes does not raise the
rear flippers enough, which leads to a slight tip of the robot, requiring
human intervention. This is most likely due to the discrepancy between
the camera angle in the simulator and real robot. The policy learned in
the simulator most likely prefers camera data to infer the pitch of the
robot and therefore gets confused when the camera angle differs.. Stage C as the part when the robot is on top of the palette and has
to traverse it and lower the front flippers as it approaches the edge
of the palette. In our experiments this is mostly successful with some
unnecessary movement when on top of the palette but successfully lowers
the flippers when reaching the edge.

Figure 10.6: Stage C of the traversal, supporting with front flippers.
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. Stage D as the part where the robot descends the palette and needs to
raise both front and read flippers to ensure a smooth descent. On the
real robot this works mostly, but if the robot is descended too slowly or
is paused in the middle of the descent, the RNN policy "forgets" what is
behind it, and straightens its flippers, leading to a non-smooth traversal.

Figure 10.7: Stage D of the traversal, raising back flippers so that the robot
doesn’t fall abruptly as it rolls of the palette.

Comparison of various policies. All three policies seem to work and perform
more or less similarly in terms of behavior. This is expected since they are
the same policies, differing only in the type of input that they were trained
on. It is difficult to tell which type of input is better due to the availability
of only 1 palette in the vicinity of the robot and the lack of a diverse test
environment.
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Chapter 11
Suggested methods of improving transfer
using image modification

11.1 Using a modifier network by matching
GRAM matrices between old and new data
distributions

Most methods that are used to transfer a policy from a simulated environment
to a real one can be though of as shallow modifications because we are
modifying information at the pixel level, without any change to the underlying
semantic content. The rationale behind this assumption is that the simulator
which we have at our disposition models the real world, which is our target
and that the only difference between the two, visually, is at a textural level.
This would mean that a relatively shallow modification of an image from
the target domain could make it look like an image from the simulator. The
concept of ’how deep’ the modification has to be is very important when
considering the architecture of the neural network modifier function G that
we need to use. In terms of convolutional layers, we could conjecture that
if our above rationale holds then at most two convolutional layers (with
spatial pooling in between) can suffice. In any case, we will continue with
the assumption that it holds.

Problem formulation. A policy π(os) is usually trained on observations
os ∼ Ds where Ds is the simulator domain. We instead train the policy
on observations G(os) ∼ Dt which have been modified by the function G
to resemble observations from the target domain Dt. In other words, the
function G will modify the simulator images from the so that they look like
real images in attempt to minimize distribution mismatch when deploying to
the real environment. The difficulty is deciding on and training the function
G.

Suggested algorithm. We assume that we have a dataset U ∼ Dt which are
real images collected from the target environment which stylistically resemble
images close to the environment that we will be deploying the robot on. At
training time, we train two policy networks, each with their own convolutional
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11. Suggested methods of improving transfer using image modification.............
feature extractors CθA and CθB . Each network is parametrized and trained
independently using a reinforcement learning algorithm. Network CθA is
meant to be trained on the unmodified simulator input image os and network
CθB is meant to be trained on the simulator image which is modified by
network GθG .

At each time step, the robot observes a simulator image os, and selects
random image it ∈ U . The image os and modified image G(os) is then used
as inputs to networks CθA and C1

θB
respectively. Image it is fed into a third

network C2
θB

as shown in figure 11.1. We record the feature map activations in
all 3 networks. We then want to update network GθG such that the content of
the feature maps in networks CθA and C1

θB
match and such that the textural

style between both networks C1
θB

and C2
θB

matches. This is done by defining
and minimizing content loss function Lc and style loss function Ls. The
gradient ascent update is shown in equation 11.3:

Figure 11.1: Diagram illustrating the network structure of the algorithm.

θG ← θG − α · ∇θGLs(os, it, θG, θB)− β · ∇θGLc(os, θA, θB) (11.1)
Ls(os, it, θG, θB) =

∑
i∈{1,2}

‖gram(M i
C1
θB

(G(os))), gram(M i
C2
θB

(it))‖2 (11.2)

Lc(os, θA, θB) =
∑

i∈{2,3}
‖M i

C1
θB

(G(os)),M i
C
θA

(os)‖2 (11.3)

Where gram(M i
Z(os)) is the gram matrix of the ith layer features maps M

of network Z which are stretched out into a one dimension. This loss function
is inspired by popular technique called neural style which attempts to transfer
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the textural style from one image to another. We use only the first one or
two layers of the network. The reason is that the higher we go, the more the
features encode semantic content of the image, which is not what we want to
transfer. The advantage of this technique is that we can see the results during
training on the simulator and visually assess if the style transfer is working or
not by looking at the modified images G(os). This doesn’t however guarantee
that the policy will generalize to the target domain.

11.2 Using GAN to train modifier network

We look at one more approach on how to modify an image from one domain
to look like it was sampled from another domain. In the previous section
we approached the problem using a style transfer method which attempts to
match gram style matrices from both images. A different and more popular
approach is to use Generative Adversarial Networks (GAN) for this kind of
task. Similarly as to the previous approach, we are looking to learn a modifier
network G which modifies images from one domain A to look as if they came
from domain B. In the context of GANs, the problem is formulated as follows:
The generator G(os, z) is conditioned on a random vector z and input image
os. The discriminator randomly receives as input either an image from the
generator G(os, z) or real images from the target domain it. The task would
then be for the generator to modify the input image in such a way so that
the discriminator D(X) cannot tell if it’s being fed a real image or a modified
image. This structure is illustrated in figure 11.2

Figure 11.2: Using GANs to train a modifier network which changes the ap-
pearance of the simulator images to look like images from the target domain.

Such an approach was has been demonstrated to be effective [13] for some
tasks. The impracticality with this method is that we do not have a good set
of images that represent the target domain. This is due to the fact that the
source environment that the policy is being trained on is very narrow in terms
of content, and for this technique to work, we would have to gather a large
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enough set of images which represents this environment in the real world.
This is a difficult task and prone to failure since the discriminator will latch on
any content discrepancies and judge the images in that manner which is not
what we want. As in the style transfer approach, we can mitigate this issue
by making the discriminator "weak", in the sense that it cannot understand
image content, but only style. This means that the discriminator would not
have access to the entire image that is provided to it, but rather to some
statistic on that image which represents the textural style of the image, such
as the gram matrix. It is however unclear on how to further process the gram
matrix for the discriminator. Feeding it into a fully connected neural network
means that we would have excessively many connections, which would lead to
overfitting. In conclusion, unless there is a dataset from both the target and
source domains which are large enough and similar content-wise, the previous
suggested approach using gram matrix and content matching would probably
work better.
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11.3 Results comparison

In parts II and III we learn several different policies in the simulator using
pixel inputs from an observer camera looking at the whole scene and from a
front facing camera using various types of inputs. For reactive policies the
depth image performed best, with up to 22/25 successful runs in our D25 test
environments. RNN policies outperform reactive policies, especially when
it comes to more difficult criteria which require memory. When comparing
policies learned using reinforcement learning, RNNs are also superior to
reactive policies. Our best trained RNN policy complete D25 with a 24/25
success rate while the best reactive achieves 22/25 and are visually superior.
Typical failure cases are when the robot gets stuck in a position where it does
not have traction between the obstacle and the flippers.

11.4 Computational performance of neural
network policies

As mentioned in the motivation of this thesis, one of the reasons why being
able to navigate from a single front facing RGB camera is advantageous is their
very small size, availability and low price. This means that we could equip
very small embedded robots with cameras as the only exteroceptive sensors
and train a neural network as the policy of the robot. The computational
time of a CNN or recurrent CNN policy such as the one shown figures 6.2 and
6.12 respectively, on a modern mid-tier desktop PC takes roughly 100-600 µs
depending on the amount of convolutional filters and fully connected units
used. The additional recurrent layers do not add significant computational
cost.

We consider two different types of embedded systems. The first one
featuring an ARM - M cortex microcontroller at 168Mhz including a hardware
FPU running efficient C code with or without the overhead of an RTOS. If
we don’t consider SIMD instructions we can get a very rough clock-for-clock
computation time requirement of 25-30x compared to a modern desktop
x86 processor which would mean roughly 10-20ms, a rate that can be used
realtime even for a relatively fast system such as a quadrotor. Implementing
a specific neural network architecture in raw C code is relatively easy. The
difficult part is implementing modularity and training which is not required
for deployment. The second system that we will consider is a multi-core
ARM A cortex system at several Ghz running a full OS. Such a system is
outperformed by a modern desktop PC by only 3-10x so the computational
time of a trained neural network policy would most likely be insignificant in
this case.
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11.5 Discussion and future work

The trained neural network policies works well in general as a means to
configure the flippers in order to successfully traverse an obstacle both in the
simulator and real robot. However, the robot was trained and tested on one
type of obstacle in a relatively controlled setting. To be able to apply it to
a real situation in indoor and outdoor navigation we would require to train
the policy on a much more variable environment, something that resembles
the sites that the robot is expected to travel in. In real world tasks we would
also require the ability to navigate under various conditions such as outdoor
daytime/night time, indoor light or dark conditions. This could theoretically
be overcome by training several policies from various image types, such as
RGB camera, Depth camera and IR camera which will cover all the conditions
that we might face. In the real experiments we only considered a very small
portion of potential options for policy transfer from the simulator to the
real robot. One future direction in this regard would be to experiment with
the suggested transfer algorithms for image modification to minimize the
distribution shift between the simulated render and real sensor image inputs.

Another possible direction to improve this work would be to train the robot
to control the track velocities and navigate from point A to point B using
a goto(X,Y) form of input to the robot so that the operator only specifies
coordinates where the robot should go and the robot should decide on how
to get there. Something like this could be trained using a reinforcement
learning algorithm called Hindsight experience replay [7] in which the agent
is conditioned not only on current sensory inputs, but also on a given goal.
The agent gets rewarded for getting to a goal successfully, but when it fails
it does not get zero reward, but instead it saves that episode with the goal
state which it achieved and receives a reward of 1. The agent then generalizes
between attained goals and enables us to directly input a destination goal
that we would like.

11.6 Conclusion

In conclusion, we showed several deep learning approaches for training a neural
network locomotion policy for the NIFTi robot in a simulated environment.
We showed that supervised methods can be a simple and effective way on
how to learn a policy in some cases and that a small amount of training
examples can suffice if done correctly. We demonstrated the GANs can be
used as an alternative error proxy for learned from demonstrations and can
be advantageous in the case where actions distributions are multimodal. We
also showed that using reinforcement learning we could learn well performing
policies in the simulator, with easily adjustable performance criteria such as
control efficiency and locomotion smoothness. We compared the performance
of reactive and recurrent policies and compared their performance, showing
that the recurrent networks are more powerful for learning sequential tasks due
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to their recurrent memory state. We also showed that using a convolutional
neural network as a feature extractor is an effective method to reduce a high
dimensional image to a lower dimensional embedding which can then be
used as features for a policy. We showed that a policy learned even on a
grayscale front facing image from the simulator transfers to a certain extent
without any modification to the real robot. This further demonstrates that it
is possible to learn policies in simulated environments and transfer them to a
real robot. We also suggested and implemented a way on how to mitigate the
discrepancy in physics between the simulator and real robot for RNN policies
as well as two approaches on how to minimize the distribution shift between
the simulation camera render and the real world camera sensor by using gram
matrix style matching and Generative Adversarial Neural networks.
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Appendix A

A.1 Predicting large values with neural networks

In reinforcement learning cumulative reward values for a single episode can
be up to several thousand in value. This cumulative reward is estimated
by a value or Q function which is usually implemented by a neural network
approximator in the case where we have high dimensional inputs for example.
Neural networks are usually implemented with very small weight values and
activation functions such as sigmoid and tanh which limit the output potentials
to [−1, 1]. It is then not unreasonable to examine if the implemented neural
network architecture can actually output values in the thousands because
if it can’t then the reinforcement algorithm will surely fail. An experiment
was made where we force a neural network to fit to random samples from a
gaussian process scaled by various coefficients. We found that it is possible to
predict values ranging in tens of thousands if the neural network is correctly
formed. Resultant weights of connections in all layers are roughly in the
range [−20, 20] after training on large values in the tens of thousands.

The following observation have been made which contribute to success or
failure in training neural networks to predict very large values.. If the neural network is shallow then many more units are required.

Deeper network with less units is more stable. In general, the larger the
values the more neurons required.. Correct initialization matters, especially if the network is deep. Xavier
[22] initialization works well.. Inputs have to be scaled correctly, ideally [−1, 1]. Very high inputs
(> 10) perform poorly or fail to train at all.. Tanh activations should not be used when predicting large values due to
saturation. Popular Relu units suffer neuron death due to high gradients.
Leaky Relu [46] has been found to perform best due to their ability to
recover.. L2 weight decay value is not important as long as it is larger than 0.01
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Figure A.1: Predicting large values with neural networks. The input is the index
of the value divided by 100, the output is the predicted value.
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